Balloon Deployment System

Preliminary Design Review

Customer: Dr. Dale Lawrence Advisor: Matt Rhode

Jake McGrath Command and Control Sebastian Urrunaga Structures

Kyler Stirewalt Release Mechanism Chenshuo Yang Structures

Release Mechanism

Grant Norman Command and Control

Jack Soltys Structures

Aufa Amirullah Command and Control

Matthew Konnath Release Mechanism

Peter Hurst Structures

Presentation Overview

- Project Description
 - Project Definition
 - Objectives
 - Critical Project Elements
- Evidence of Baseline Feasibility
 - Structures analysis
 - Release Mechanism analysis
 - Command/Control
- Current Status
 - Further development of the wind model
 - Cost analysis

Mission Statement

The team shall design, build and test a high altitude balloon launcher for use in heavy winds supporting the Hypersonic Flight in the Turbulent Stratosphere (HYFLITS) program. The launcher will stand 3m high when fully extended, pose no risk for balloon puncture, be operable by a single user hands free and be easy to set up and transport.

Project Description: Project Definition

- Need: High wind weather balloon launching system
- Program: Hypersonic Flight in the Turbulent Stratosphere (HYFLITS) program
 - Study how future hypersonic vehicles can account for turbulence and particles in stratosphere
 - U of Colorado, Embry-Riddle, U of Minnesota
- Customer: Professor Dale Lawrence at CU-Boulder Smead Aerospace Engineering

Current Process

Naive Approach: Second Person

Pros:

• Solves the issue of the payload swinging into the ground

Cons:

- Expensive
- Difficulty scheduling
- Still difficult to hold the balloon
- Not very high off of the ground

Project Description: Objectives

Use Case One: Single Balloon Launch

User arrives at launch site and assembles the BDS in under 5 minutes

A Contraction

User fills the balloon with helium gas

2

/	_	
	٥	
	Э	
\sim		

After confirmation of a successful launch, the user disassembles BDS and stores the system in the carrying case for departure

The user departs the launch site and is ableto repeat this process for another launch when needed

Use Case Two: Two Balloon Launch

User arrives at launch site and assembles the BDS in under 5 minutes

2 User fills the balloons individually with helium gas

4 User extends BDS to launch height and then walks downwind with payload for launch 3 meter launch height to avoid obstacles (vegetation)

After confirmation of a successful launch, the user disassembles BDS and stores the system in the carrying case for departure

The user departs the launch site and is ableto repeat this process for another launch when needed

9

Project Description: FBD

Project Description: FBD

Project Description: Baseline Design

Project Description: Baseline Design

BDS Subsystems

BDS Subsystems

Critical Project Elements

Critical Project Elements	Requirements	Feasible
Structure	 Stable in 20 m/s winds @ 3m high Withstand forces/moments Balloon loaded by an avg. height user User safety 	
Release Mechanism	 Thick rubber neck with a grasp that will not damage the neck Secure Grip of balloon in 20 m/s wind 	
Command and Control System	 Hands-free operation Wireless link and battery powered release mechanism 	

- Problem: Stability in 20 m/s winds
 - Large moment to resist
 - Drag of a sphere: 308N (upper bound)
 - Force acting at 3m high
 - Moment=924 [N*m]
 - Solutions:
 - Freestanding (unfeasible due to size)
 - Anchored via staked cables

- Problem: Stability in 20 m/s winds
 - Anchoring as part of set up:
 - Most launches occur on dirt or grass
 - Anchored cables on truss to resist moment
 - Max pull in x direction and min pull in y direction keeping stake in ground
 - Longer cable reduces angle of pull on stake wrt ground
 - \circ F*cos(θ)=Fx
 - Increases x normal force and friction of stake

- Problem: Stability in 20 m/s winds
 - Anchor hold strength
 - 6.5 [in] aluminum tent stake
 - Spring scale
 - Hammered into ground
 - Pulled at ~45 deg (structure angle ~15 deg)
 - Expect higher hold force at lower pull angle by maximizing Fx of stake

Tent Stake	Pull Force	Pull Force
Sand	67 [N]	15 [lbf]
Top Soil	267 [N]	60 [lbf]
Clay	330 [N]	74 [lbf]

- Problem: Stability in 20 m/s winds
 - Anchored solution to resist balloon moment:
 - Cable length: 4 m
 - X component of stake pull $F^*\cos(\theta)$:
 - Sand: 65 [N] need 14 stakes (unfeasible)
 - Topsoil: 258 [N] need 4 stakes
 - Clay: 319 [N] need 3 stakes

- Problem: Stability in 20 m/s winds
 - Maintain stability in changing wind direction:
 - Most wind direction change sub 17 deg
 - Most anchors placed on upwind side
 - 2 anchors into wind
 - 2 anchors at 18 degrees off predominant wind (designed to resist max moment at 18 deg wind change)
 - 3 remaining anchors in case of wind change (user safety)

- Structure strength:
 - Shear (V) in extending bar (8020 Aluminum):
 - τ =.4 MPa < τ _{max}=170 MPa

Zoom View:

- Shear (V) in truss corner bar (6082-T6 Aluminum):
 - τ =16.2 MPa < τ _{max}=210 MPa
- Truss overall loading
 - Load/ft: 604 N load/foot
 - Max center load: 3962 N
 - o 1/4 in. Steel Wire Rope: 6227.5 N (tension)

- Shear (V) in linear bearing:
 - UHMW material
 - Weakest configuration w/ wind as indicated
 - Area subject to shear (blue)
 - \circ τ=.55 MPa < τ_{max}=20 MPa −−−

- Structure Strength:
 - Bending Stress: 61.5 kPa ~ 8.91 Psi
 - Bending Moment: ~ 620 Nm 、

- Structure Strength:
 - Bending Stress: 190 kPa ~27.6psi
 - Bending Moment: ~620 Nm

Load

1m

- Launch height from 3m
 - Average user height: 1.6 m (~62 in) 0

Critical Project Elements

Critical Project Elements	Requirements	Feasible
Structure	 Stable in 20 m/s winds @ 3m high Withstand forces/moments Balloon loaded by an avg. height user User safety 	
Release Mechanism	 Thick rubber neck with a grasp that will not damage the neck Secure Grip of balloon in 20 m/s wind 	
Command and Control System	 Hands-free operation Wireless link and battery powered release mechanism 	

Critical Project Elements

Critical Project Elements	Requirements	Feasible
Structure	 Stable in 20 m/s winds @ 3m high Withstand forces/moments Balloon loaded by an avg. height user 	
Release Mechanism	 Thick rubber neck with a grasp that will not damage the neck Secure Grip of balloon in 20 m/s wind 	
Command and Control System	 Hands-free operation Wireless link and battery powered release mechanism 	

BDS Subsystems

- Current method for transport
- Similar to BDS method
- Will not damage balloon

- Rectangular electromagnet that produces 200 lb pull force
 - Thinner but pricier than circular magnet
 - Easier interfacing for systems engineering
 - Lightweight (~1 lb)

 $40 \le \sum F_{net_x} \le 80 lbf$

Part # 🖕	Width (A)	Length (B)	Height (C)	Mount (D)	Thread & Depth (E x F)	Location of Leads (G - H)	DC Volts	Watts 🖕	Pull Force 🍦 (lbs)	Specs 🖕	Price 🔶	Quantity	
BRE-1515-1;	1.50	1.50	1.25	center hole	10-32 x .375	.500062	12	8	100	Download	\$75.00	1	ADD
BRE-1525-1	1.50	2.50	1.25	1.00	10-32 x .375	.750500	12	5	200	Download	\$95.00	1	ADD

• Will the mechanism keep the balloon from floating straight up?

• Assume μ_s between dry urethane and rubber

- Total friction force = 268 lbf
- Balloon upward Force = ~ 5 lbf

Critical Project Elements

Critical Project Elements	Requirements	Feasible
Structure	 Stable in 20 m/s winds @ 3m high Withstand forces/moments Balloon loaded by an avg. height user User safety 	
Release Mechanism	 Thick rubber neck with a grasp that will not damage the neck Secure Grip of balloon in 20 m/s wind 	
Command and Control System	 Hands-free operation Wireless link and battery powered release mechanism 	

Critical Project Elements

Critical Project Elements	Requirements	Feasible
Structure	 Stable in 20 m/s winds @ 3m high Withstand forces/moments Balloon loaded by an avg. height user User safety 	
Release Mechanism	 Thick rubber neck with a grasp that will not damage the neck Secure Grip of balloon in 20 m/s wind 	
Command and Control System	 Hands-free operation Wireless link and battery powered release mechanism 	

BDS Subsystems

Evidence of Baseline Feasibility: User Control

- User holds payload with both hands
- Button attached at waist
- Pressed with elbow to send signal when ready

- 2.6 lb for 12V
- 13 Ah

Component	Voltage (V)	Current (A)	Power (Watts)	Time On (Minutes)	Charge (A-Hr)	Number of Launches
Receiver:						
Arduino Uno	12	0.2	2.4	5	0.01666666666	
Electromagnet Gripper	12	0.416	4.992	5	0.03466666667	
RF Board	5	0.01	0.05	5	0.0008333333333	
RF Rx	5	0.01	0.05	5	0.0008333333333	
Rx Total					0.053	245.2830189
User:						
Remote Wireless Key Fob	3	0.04	0.12	0.5	0.0003333333333	630
Power:						
2 In-Series 6V Batteries (Rx)	12	4			13	245.2830189
CR2302 (Tx)	3	0.2			0.21	630

- Power the electromagnet
 Start the timer to prevent
- accidental launch during set-up
- 3. Send Deploy Command
- 4. When signal is received (and the time is up), electromagnet is deactivated
- 5. Balloon is launched

Critical Project Elements

Critical Project Elements	Requirements	Feasible
Structure	 Stable in 20 m/s winds @ 3m high Withstand forces/moments Balloon loaded by an avg. height user User safety 	
Release Mechanism	 Thick rubber neck with a grasp that will not damage the neck Secure Grip of balloon in 20 m/s wind 	
Command and Control System	 Hands-free operation Wireless link and battery powered release mechanism 	

Prices

Item	Quantity	Price per Unit (USD)	Shipping Cost (USD)	Total Cost
Arduino Uno	1	\$23.00	\$1.63	\$24.63
RF Board	2	\$23.00	\$0.00	\$46.00
RF Rx	2	\$6.80	\$0.00	\$13.60
Remote Wireless Key Fob	1	\$5.20	\$0.00	\$5.20
6V (lead acid) Battery (Rx)	4	\$14.99	\$0.00	\$59.96
CR2302 (Tx)	1	\$2.85	\$0.00	\$2.85
Electromagnet	1	\$95.00	\$0.00	\$95.00
F24 Truss	1	\$231.00	\$0.00	\$231.00
1515 8020	1	\$154.00	\$0.00	\$154.00
80/20 Linear Bearings	4	\$48.50	\$0.00	\$194.00
			Total Cost	\$826.24

Current Status and Remaining Studies

SUN	MON	TUE	WED	THU	FRI	SAT
30	31	1	2	3	4	5
	Lab		Lab		Team Meeting 10am – 12pm	
	10:40am – 12:30pm		10:40am – 12:30pm			
Team Meeting 5 – 7pm						

Current Status and Remaining Studies

08	3			0	9			1(0			1	1		
W1	W2	W3	W4	W1 PDD	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4
					CDD										
							PDR		- - - -						
									CDR					· • • • • •	

Approximate Build & Test Schedule

Current Status and Remaining Studies

- In depth analysis on wind/drag modeling on the balloon
 - Lower project cost
 - More portable
 - Higher factor of safety

Acknowledgements

Dr. Dale Lawrence

Matt Rhode

Dr. Jelliffe Jackson

References

Modulus of Elasticity: <u>https://www.azom.com/properties.aspx?ArticleID=920</u>

Wind direction change: https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1256/wea.176.04 Coefficient of Drag: https://www.arc.id.au/CannonballDrag.html#:~:text=Newton%20experiments%20yielded%20the%20first%20accurate%20measuremen ts%20of,for%20low%20speed%20drag%20on%20a%20smooth%20sphere. Electronics: https://store.arduino.cc/usa/arduino-uno-rev3 https://buymagnets.com/product-pdfs/BRE-1525-12.pdf https://www.dfrobot.com/product-1089.html https://www.dfrobot.com/product-1607.html https://www.dfrobot.com/product-1090.html https://www.grainger.com/product/45EK05?gclid=CjwKCAjwzvX7BRAeEiwAsXExo6VwS4nzvN8WSBvfhlht9TifD0 Tg1Hkt1im EHrhyUy84 Bfgz7GBoCJEUQAvD BwE&cm mmc=PPC:+Google+PLA&ef id=CjwKCAjwzvX7BRAeEiwAsXExo6VwS4nzvN8 WSBvfhlht9TifD0_Tg1Hkt1imEHrhyUy84__Bfgz7GBoCJEUQAvD_BwE:G:s&s_kwcid=AL!2966!3!281698275282!!!g!470981977 891!&gucid=N:N:PS:Paid:GGL:CSM-2295:4P7A1P:20501231 https://www.uline.com/Product/Detail/S-17590/Batteries/Duracell-6V-Lantern-Alkaline-Battery?pricode=WB0943&gadtype=pla&id=S-17590&gclid=Cj0KCQjw2or8BRCNARIsAC ppyZeiSM- 7YcD-PU2886X0NzdmHSN3YnyFgzdSNg8gxcJ6U0IQ7NSjkaAmJ3EALw wcB&gclsrc=aw.ds https://cdn-shop.adafruit.com/datasheets/maxell cr2032 datasheet.pdf

Appendix - Pat Drag Work

Changing the assumption Dt=0.2 for linear impluse $2 \tan g = m \Delta V = 3(20) = 300 N = 68[167]$ $D = QC_0A = \frac{1}{200}(0.5) = 314N = 71[bf]$ $l^* = r = lm$ Re = 1.20.1/(18.400) = 1000 6=0.2 for smooth spheres experaneing 10° Re $D = \frac{2a^2}{2}(0,2)\pi = 125.66[N] = 30164$

Appendix - Grant Moment Work

Appendix - Pete Moment Work

$\Sigma M = (308N)(3m) - Fx(nstalles)(1m)$	
924 = Fx(n) scincl: 924.1/m = 65(n) n= 14 statues	
typsul: 424.m = 258(n) n=4stales	
clay: 924.0 m = 319(n) Summing arund pe n = 3stakes + 4 - awat (rece, bolin)	wt o'
$F = F\left(\frac{3.7 \hat{r} - 1\hat{J} + l\hat{k}\hat{k}}{\int 3.7^2 + l^2 + l^2 + l^2}\right)$	33. 4
Funs = F(.925î - 25i + .3i) [N] + sin	18 CX
$M = r \pm F = \begin{pmatrix} 7 & 3 & 12 \\ 0 & 1 & 0 \\ 0$	Ê
$M = v + F = \begin{pmatrix} 1 & j & k \\ 3.7 & 0 & 1.2 \\ 0 & 0 & 0 \\ .915 - 25 & 3 \end{pmatrix} = .31 - 0 & j + .925$	Ê
EM= 308-21(3m)967(Fr) = (E(F)	
n= M sund Suithyre	
n= 4 tupsul	
n= 3 cby 4 2 3.8 (ug(b)=	X
Im um I u	
x 3.7 1 3.87	

Appendix- Secure two system deployment

Appendix: Evidence of Baseline Feasibility -Structure • Material properties:

	Description	Material	Area	Tensile Strength	Shear Strength	
Extending Bar	8020 bar 1.5 in x1.5 in	6105-T5 Aluminum	744.16 m ²	280 MPa	170 MPa	
Base Truss	Global Square Truss F24	6082-T6 Aluminum	1.068e-4 m ²	250 MPa	210 MPa	
Support Cables	Steel wire rope ¼ inch	Steel	3.166e-5 m ²	200 MPa	NA	
Support Legs						

- Minimum diameter of the bolt.

Appendix:Evidence of Baseline Feasibility -Structure

Fasteners/Junctions stress

The bolt will be used for connecting rail and the top bar. Two bolts stabilize the connection point.

- Assumption:
 - Wind force is acting on the connection part in the y direction.
 - Two bolts are identical, the reaction force from each bolt is the same.
- Purpose:
 - Determine the maximum shear stress on each bolt.

ction part in Rail ----

Bolt

Connection between rail and top bar :

TOP Bar

Appendix: Evidence of Baseline Feasibility -

- Fasteners/Junction Stress:
 - Minimum diameter required for Grade 5 anchor bolts is 1/2 inch (12.7 mm)
 - Minimum required area for the bolt:

$$A_{min} = \frac{\pi \cdot d_{min}^2}{4} = \frac{\pi \cdot 0.0127^2}{4} \quad \therefore A_{min} = 1.2668 \cdot 10^{-4} (m^2)$$

• Shear stress of the bolt:

$$V = \frac{R_y}{2} = \frac{154N}{2} = 77N$$

$$\tau = \frac{V}{A} \qquad \tau_{max} = \frac{V}{A_{min}} = \frac{77N}{1.2668 \cdot 10^{-4}m^2}$$

$$\therefore \tau_{max} = 607.830 k Pa \approx 88.158 psi$$

Ky

cut

cut

Appendix - Project Description - Functional Block Diagram

Appendix:Evidence of Baseline Feasibility -Structure • Structure strength:

o Moment and deflection of the bolt section: $M_z(x) = -311.376x$ $EI_{zz}v''(x) = \frac{-311.38}{2}x^2 + C_1$ $EI_{zz}v'(x) = \frac{-311.38}{6}x^3 + C_1x + C_2$

$$v(x) = \frac{-51.896}{EI_{zz}}(L-x)^2(2L+x)$$

Appendix: Evidence of Baseline Feasibility -Release Mechanism

69

Appendix: Feasib

CURBE	STICS	Careers	Locations Ask a Plastic	s Expert Cart (0) 🚝 S	ign In
SHOP MA	TERIALS RESEARCH SO	UTIONS	DISCOVER CURBELL	Put us to work for	you!~ (
Materials	Industry Solutions Ap	plications	Plastic Properties Table ay make a unincua to noto ugin to	Resources retarrces on ornww parts that w	ni ne exhoa
YOU MAY ALSO	BE INTERESTED IN:	tempera	atures.		
	MOMENTIVE® Silicone	ASK	A PLASTICS EXPERT > or Get	t a Quote for UHMW Sheet, Rod	, or Fabrica
	Adhesives; excellent temperature performance, dielectric properties,	TYPICA	L PROPERTIES OF UHMW	18470	
	weatherability.	Teosile s	tranoth	onii	Notin
	UHMW Tapes UHMW Tapes have excellent obrasion resistance and a low	Flexural	modulus	psi	07
	coefficient of friction.	Izod imp	act (notched)	ft-lbs/in of notch	DZ
		Heat def	lection temperature @ 264 psi	۴F	DI
		Maximur	n continuous service temperature in air	'F	
		Water ab	scrption (immersion 24 hours)	5	D
		Coefficie	nt of linear thermal expansion	in/in/"Fx10-5	D
		Values n about ar	nay vary according to brand name. Ple n individual brand. *Double-15* notch	ease ask your Curbell Plastics repre	sentative fo
		EXPLO	RE POPULAR PLASTIC MATERIA	AL COMPARISONS:	
		• HDI	PE vs. UHMW - Both are abrasio	in resistant, but which is right fo	or your spe
		Need m	nore information about this mate	rial? Use our interactive plastic	propertie

Previous slide shows max shear stress of ~88 PSI; UHMW has a tensile strength of 3100 PSI; FOS ~35

Appendix - Evidence of Baseline Feasibility Stability in 20 m/s winds

- - Max x-dir force on balloon: 308 N or 70lbs @ 3m high 0
 - Drag of a sphere:
 - D_{sphere}=q_∞*S*C_d
 - $q_{m} = (1/2)\rho_{m}V_{m}^{2}$
 - $S = (\pi/4)d^2$
 - Anchor pull out force/Support line tension: Ο
 - Tent Stakes: 66N vert pull, 133 N angle pull
 - Screw Style: 1165 N vert pull, 1730 N angle pull
 - 1/4 in. Upwind Steel Wire Rope: 6227.5 N in tension
 - X-dir length of upwind cables/downwind support legs: Ο
 - No anchoring: 9.5 m (unfeasible)
 - Tent stake anchoring: 5.7 m
 - Screw anchors: 1.55 m

Appendix - Evidence of Baseline Feasibility -Structure • Loaded by Single User

- Truss section staked to ground
- Balloon loaded at 1 m (3.3 ft)
 - Within reach of user
- Extension bar raised/locked for launch at 3m height
- Collapsible
 - 1 m truss section, 2x 1 m bar extension
 - Support legs assembled in 1 m max length sections
 - Cross section of truss: .22m x.22m
 - Wing nut/bolt on support legs
 - Carabiner clip on upwind cable anchors
 - No tools required besides hammer for staking

Appendix - Evidence of Baseline Feasibility -Structure

- Structure strength:
 - Shear (V) in extending bar:
 - 8020 Aluminum
 - τ_{max}=170 MPa
 - A=744 mm²
 - $\tau = V/A = .4 \text{ MPa} < \tau_{\text{max}}$
 - Shear in extension bearing:
 - Shear (V) in truss corner bar:
 - 6082-T6 Aluminum
 - τ_{max}=210 MPa
 - A=106.8 mm²
 - $\tau = V/A = 16.2 \text{ MPa} < \tau_{max}$
 - Truss support leg/cable junction
 - Load/ft: 604 N load/foot
 - Max center load: 3962 N

Appendix - Evidence of Baseline Feasibility -Structure

 $\sigma_b = \frac{My}{r}$

 σ_{k} – Bending stress

- Structure Strength:
 - Shear Stress = 0.4 MPa \bigcirc
 - Axial Stress = 2.79 KPa \bigcirc
 - Bending Stress = 102 MPa \bigcirc
 - Maximum bending moment= 616N·m \bigcirc
 - Maximum moment acting on linear bearing: 308N·m Ο
 - Maximum deflection= 2.369e-9 m(~0m) \bigcirc

80/20 extension bars Fdrag = 308N 2m 0

Appendix - Evidence of Baseline Feasibility: Command/Control

```
sketch_oct08a§
int pin = 7;
unsigned long duration;
void setup() {
  // put your setup code here, to run once:
 Serial.begin(9600);
  pinMode (pin, INPUT);
void loop() {
  // put your main code here, to run repeatedly:
  time = pulseIn(pin, HIGH);
  Serial.println(time);
```


Appendix - Evidence of Baseline Feasibility: Structure

- UHMW material
 - Area subject to shear
 - τ=.55 MPa <τ_{max}=20 MPa

Max shear stress of ~80 PSI; UHMW has a tensile strength of 3000 PSI; FOS ~37.5

80/20

Linear Bearing, 2.062 In H, 1.875 In L

Mfr. Model # 6730

Catalon Page # N//

Item # 2RCN3 UNSPSC # 31171506

Country of Origin USA. Country of Origin is subject to change

Compare this product

Help us improve our Product Images

Technical Specs

Item	Linear Bearing	Bearing Type	UHMW PAD
Туре	Single Flange Assembly	Lubrication	Dry
Overall Width (In.)	1.624 in	Material	UHMWPE
Overall Length (In.)	1.875 in	Finish	Clear Anodiz
Overall Height (In.)	2.062 in	Color	Silver
Body Width (In.)	2.062 in	Height	2.062
Mounting Hole Center (In.)	1 in	Mounting Bolt (In.)	1/4-20
Mounting Hole Dia. (In.)	0.265 in	Mounting Hole (In.)	0.265 in
Bolt Size	1/4-20	Width	1.624
Slot Width (In.)	0.255 in	For Use With	10 Series