Spring Final Review

Customer: Scott Taylor, Surrey Satellite Technology U.S.

Advisor: Josh Stamps, Sierra Nevada Corporation

Presenting: Emmett Bailey, Lindsay Goldworm, Elizabeth Luke, & Mary Scites

Other Team Members: Anthony Anglin, Aspen Coates, Zach McConnel, Nicholaus Monahan, Sierra Williams

Project Purpose and Objectives

Purpose and Objectives

Testing Overview and Results

Design

Description

Systems Engineering Project Management

Project Motivation

- Star trackers need to see dim light from distant stars
- They compare what they see with onboard star catalog to make spacecraft attitude adjustments
- Nearby bodies emit/reflect stray light which hinders star trackers ability to see dim light
- Baffles attenuate and eliminate stray light from nearby bodies
- Lightweight deployable baffle for smallsats

Surrey Procyon Star Tracker Baffle¹: 0.55 kg

Description

Engineering

Management

Project Goals

- Develop a prototype deployable baffle for a star tracker to be used on a small satellite platform
- Design and manufacture a deployable baffle to limit stray light into an optical sensor
- Develop a test methodology and instrumentation suite to measure performance of the baffle for light attenuation
- Perform the tests for the deployment and light attenuation of the baffle

Deployment CONOPS

Light Attenuation CONOPS

Requirements •FR1: Baffle shall be deployable

- DR 1.1: Deployable using 28V
- DR 1.2: Full deployment ground testing shall be conducted
- •FR2: Baffle shall fit within volume constraints
 - DR 2.1: Fit within 125x125x50mm box
- •FR3: Baffle shall adhere to mass constraints
 - DR 3.1: Mass less than 300g
- •FR4: Baffle shall attenuate light

Purpose and

Objectives

• DR 4.1: Ground testing shall be done to determine light obscuration

Testing Overview

and Results

Systems

Engineering

• DR 4.2: 99.9% light attenuation at 30°

Design

Description

• DR 4.3: Baffle shall have a pre-obscuration angle of $>10^{\circ}$

Project

Management

Levels of Success

Functional Requirements	Tier 1	Tier 2
FR1: Baffle shall be deployable	Manual deployment	Electronic deployment with wired connection
FR2: Baffle shall conform to stowed volume constraint	175 mm x 175 mm x 50 mm	125 mm x 125 mm x 50 mm
FR3: Baffle shall adhere to mass constraint	< 500 grams	< 300 grams
FR4: Baffle shall attenuate light to 99.9%	At 40° light incidence angle	At 30° light incidence angle

Design

Description

Testing Overview and Results Systems Engineering

Design Description

Design

Description

Purpose and Objectives

Testing Overview and Results Systems Engineering

Final Product

Deployed

Stowed

Light Attenuation and Deployment

Finalized Baffle Design & Manufacturing

Critical Project Elements

CPE	Importance
Deployment (FR1-FR3)	Cannot attenuate light if not deployedMore efficient stowage
Light Attenuation (FR4)	• Cannot see light from stars if saturated by stray light
Testing (FR1&FR4)	• Verifies and validates properties of the baffle

Changes Since TRR

Linear Bearing Adhesive

Purpose and

Objectives

- Changed from Loctite Liquid Weld to Gorilla Glue
 - Changed due to Loctite curing to a flexible solid

Design

Description

Motor Mount

Testing Overview

and Results

- Orientation changed due to motor binding issues during deployment testing
 - No net impact on mass or volume constraints

Systems

Engineering

Project

Management

Changes Since TRR

Photo-Amplifier Circuit

- Grounded non-inverting input
 - Proper op-amp functionality
- Added inverting-input resistor
 - Finer amplification control

Testing

- No calibration ropes
 - Tape measure within tolerance
- Laser level instead of laser pointers
 - More accurate

Mass Budget

•FR3: Baffle shall adhere to mass constraints ★
• DR 3.1: Mass less than 300g★

Component	CDR Mass with AIAA Standard Percent Mass Growth Allowance (g)	CDR Mass (g)	Measured Mass (g)
Baffle tiers + vanes + bearing + spacer + coating + adhesive	264.5	228.36	220.9
Motor	10.61	10.3	14.5
Linear bearing shaft	2.83	2.75	3.8
Steel screw	21.97	21.33	21.6
Motor mount	3.34	2.9	0.7
Total	303.26	265.64	261.5
Purpose and I Objectives De	Design scription Testing Overview and Results E	Systems Ingineering	Project Management

FR2: Stowed Volume	Requirement (mm)	Actual (mm)
Height	50	49.9
Width	125	88.1
Diagonal	177	125.8

Testing Overview & Results

Purpose and Objectives

Design Description Testing Overview and Results Systems Engineering Project Management

Deployment Testing

Purpose and Objectives

Design Description Testing Overview and Results Systems Engineering

Test Overview - Test Purpose

• Validate customer requirement

Description

Objectives

- Ensure baffle deploys to necessary height for optical performance (>86mm)
- Ensure baffle doesn't over deploy and damage it (<88mm)

Requirement	Metric
FR1: Baffle shall be deployable	Yes or no
DR1.2: Full deployment ground testing shall be conducted	Test 1: 86 mm Test 2: 88mm
Purpose and Design Testing O	Overview Systems Project

and Results

Engineering

Management

Test Overview - How and Where

How:

Where:

• Trudy's lab

Purpose and
ObjectivesDesign
DescriptionTesting Overview
and ResultsSystems
EngineeringProject
Management24

Test Overview - Overview

Test Number	Laser Height	Laser interrupted?	Achieved baffle deployment height	Deployment stop method
1	86 mm	Yes	>86 mm	Phototransistor circuit break
2	88 mm	No	<88 mm	Mechanical thread stop, manual voltage shut off

Test Overview – Details and Fixtures

Test Overview – Details and Fixtures

Laser Pointer Support

Deployment Video

Purpose and Objectives

Design Description

Testing Overview and Results Systems Engineering Project Management

Test Results - Requirement validation

Test	Motor Side Height	Bearing Side Height	Laser Height		
1	87.249 mm	82.067 mm	86 mm		
2	87.732 mm	81.585 mm	88 mm		
Metric Requirement Met					
FR1: Baffle shall b	e deployable	Part	ially Met		
DR1.1: Deployable using 28V Yes 🔀					
DR1.2: Full deployment ground testing shall be conducted Yes \bigstar					
Purpose and	Design Testing	Overview Systems	Project		

Possible Solutions

Current Design

Purpose and

Objectives

• Fully threaded rod, takes away tilting

- No mechanical stop
- Precise timing for deployment stop
- Increase diameter of dethreaded rod to limit space causing tilt

Fully Threaded Rod

Design

Description

Testing Overview and Results Systems Engineering

Light Attenuation

Purpose and Objectives

Design Description Testing Overview and Results Systems Engineering

Test Overview - Purpose

- Validate customer requirement
- Designed to simulate dark space and apparent size of the Sun

•	Character	rize light	attenuation	properties	s of the baffle
		\mathcal{O}			

Requirement	Angle	Incident Relative Power	Percentage of Light Hitting the Sensor
DR4.3: Pass-band	> 10°	0.95	95%
FR4: Stop-band	< 30°	0.0001	0.01%
Purpose and Objectives	Design Description Testin	g Overview I Results	s Project ing Management

Test Overview – How and Where

Where:

- CNL clean room
- 19ft felt tunnel

Engineering

Management

Test Overview – Fixtures

Test Overview - Calibration

Design

Description

Purpose and

Objectives

- Insert the Laser level into the trough
- Turn on the laser level
- Rotate the baffle/negative/rotary table to line up in longitudinal zones
- Turn laser 90 °
- Turn leveling bolts to line up in the lateral zone

Tolerance:

Distance \pm 0.2 m Changes resulting obscuration angle by 0.40°

Testing Overview and Results
Test Overview - Overview

Two different tests:

- Symmetric
- Asymmetric
 - Middle tier offset by 2 mm

Design

Description

Symmetric Baffle

Asymmetric Baffle

Testing Overview and Results Systems Engineering

Test Overview - Details

• Take voltage reading at 0°

Purpose and

Objectives

- Take voltage readings from -30° to 30° by 4° incriments
 - Increase resolution to 0.1° as needed
- Calculate power from known resistance and measured voltages
- Calculate relative power at all angles

$$P_{rel} = \frac{P}{P_0}$$

Design

Description

Testing Overview

and Results

Model vs Test Zemax Ray Tracing Model

Actual Test Setup

Test Results – Symmetric Test

<u>Requirements</u> Pass Band: Angle > 10° Stop Band: Angle < 30°

Testing Range	Pre-Obscuration - Model	Pre-Obscuration	Obscuration - Model	Obscuration
$0^{\circ} < \theta < 30^{\circ}$	11.1°	8.5° ± 0.4° 🚫	20.8°	$20.0^{\circ} \pm 0.4^{\circ}$
Purpose and Objectives	Design Description	Testing Overview and Results	Systems Engineering	Project Management

Test Results – Symmetric Test

- Examine thermal contributions of electronic components
- Time investigation for repeated test

Test Results – Symmetric Test

- Recommendations
- Examine thermal contributions of electronic components
- Time investigation for repeated test

	Testing Range Pre-Obscuration - Model		Pre-Obscuration	Obscuration - Model	Obscuration
$0^{\circ} < \theta < 30^{\circ}$		11.1°	8.5° ± 0.4° 🚫	20.8°	$20.0^{\circ} \pm 0.4^{\circ}$
	$-30^{\circ} < \theta < 0^{\circ}$	-11.1°	-1.0 <u>±</u> 0.4°° 🚫	-20.8°	$-21.4^{\circ} \pm 0.4^{\circ}$
	Purpose and Objectives	Design Description	Testing Overview and Results	Systems Engineering	Project Management

Test Results – Asymmetric Test

Test Results – Data Summary

Description

Objectives

Negative	Test Range	Pre-Obscuration - Model	Pre-Obscuration	Obscuration - Model	Obscuration
А	$0^{\circ} < \theta < 30^{\circ}$	11.1°	$-8.7^{\circ} \pm 0.4^{\circ}$	20.8°	$20.0^{\circ} \pm 0.4^{\circ} *$
А	$-30^{\circ} < \theta < 0^{\circ}$	-11.1°	$-7.5^{\circ} \pm 0.4^{\circ}$	-20.8°	-20.7° ± 0.4° *
В	$0^{\circ} < \theta < 30^{\circ}$	10.9°	$6.2^{\circ} \pm 0.4^{\circ}$	22.3°	$21.1^{\circ} \pm 0.4^{\circ}$
В	$-30^{\circ} < \theta < 0^{\circ}$	-8.8°	$-5.8^{\circ} \pm 0.4^{\circ}$	-19.7°	$-20.9^{\circ} \pm 0.4^{\circ}$
С	$0^{\circ} < \theta < 30^{\circ}$	11.1°	$8.5^{\circ} \pm 0.4^{\circ}$	20.8°	$22.3^{\circ} \pm 0.4^{\circ}$
С	$-30^{\circ} < \theta < 0^{\circ}$	-11.1°	$-1.0^{\circ} \pm 0.4^{\circ}$	-20.8°	-19.7° ± 0.4°
D	$0^{\circ} < \theta < 30^{\circ}$	10.9°	$8.9^{\circ} \pm 0.4^{\circ}$	22.3°	$21.0^{\circ} \pm 0.4^{\circ} *$
D	$-30^{\circ} < \theta < 0^{\circ}$	-8.8°	$-1.2^{\circ} \pm 0.4^{\circ}$	-19.7°	$-21.3^{\circ} \pm 0.4^{\circ}$
_	0.4	ar All Doffle Debouier			
_				Syı	nmetric Baffle
	Pre-Obscuration Angle	$ -1.0^{\circ} \le \theta \le 8.9^{\circ} $		Asy	mmetric Baffle
	Obscuration Angle $ -19.7^{\circ} \le \theta \le 22.3^{\circ} $ \checkmark			* = Never Re	ached Stop Band
	Purpose and	Design Testing (Overview Sys	tems Pro	iect

and Results

Engineering

44_

Management

Test Results - Requirement Validation

artially Met
28 📩
es 🛧

Engmeer<u>ing</u>

Requirement Validation

Design Description

Testing Overview and Results Systems Engineering

FR1 – Explanation

Functional Requirements	Tier 1	Tier 2
FR1: Baffle shall be deployable	Manual deployment	Electronic deployment with wired connection

- DR1.1: Deployable using 28V X
- DR1.2: Full deployment ground testing shall be conducted \star

FR2 – Explanation

Functional Requirements	Tier 1	Tier 2	
FR2: Baffle shall conform to stowed volume constraint	175 mm x 175 mm x 50 mm	125 mm x 125 mm x 50 mm	

• DR 2.1: Fit within $125 \times 125 \times 50$ mm box \bigstar

FR3 – Explanation

Functional Requirements	Tier 1	Tier 2
FR3: Baffle shall adhere to mass constraint	< 500 grams	< 300 grams

• DR 3.1: Weight less than $300g \bigstar$

FR4 – Explanation

Functional Requirements	Tier 1	Tier 2	
FR4: Baffle shall attenuate light to 99.9%	At 40° light incidence angle	At 30° light incidence angle	

DR 4.1: Ground testing shall be done to determine light obscuration X
DR 4.2: 99.9% light attenuation at 30 degrees X
DR 4.3: Baffle shall have a Pre-Obscuration angle of >10°

Systems Engineering

Design

Description

Purpose and Objectives Testing Overview and Results Systems Engineering

Systems Engineering Approach

Design Trades

- High Level
 - Deployment method, material selection
 - Mass driven
- Detailed trades
 - Sensor selection, light source, testing location
 - Budget, baffle, environment driven

<u>Key Takeaways</u>

Purpose and

Objectives

1. <u>Mass is most constraining factor</u>

Design

Description

2. Light sources generate heat, account for it early

Testing Overview

and Results

Systems

Engineering

Project

Management

Flow Down

- Deployment method \rightarrow Motor driven deployment \rightarrow Linear bearing
- Baffle geometry \rightarrow Aperture size \rightarrow Sensor selection
 - Star tracker trait \rightarrow 10° field of view \rightarrow 10° pass-band requirement
 - Sensor selection \rightarrow Clean room, no diffusing glass

Design

Description

- Test methodology \rightarrow Dark room
 - Dark room \rightarrow Clean room \rightarrow Felt tunnel

Testing Overview and Results Systems Engineering Project Management

Risks from CDR

Unacceptable Acceptable with mitigation Acceptable

Severity → Likelihood ↓	1	2	3	4	5
5 (Very High)					
4	Baffle deflection		Using dark room		Exceeding radial force limit
3	Exposure to bright light			Exposure to Aeroglaze, shop availability	
2				Inaccurate machining	
1 (Very Low)	Exceeding budget limitations				
Purpose and ObjectivesDesign DescriptionTesting Overview and ResultsSystems EngineeringProject Management55					

Relevant Risks

Unacceptable Acceptable with mitigation Acceptable

Severity → Likelihood ↓	1	2	3	4	5	
5 (Very High)						
4			Using dark room			
3	Baffle deflection			Shop availability		
2			Inaccurate machining			
1 (Very Low)				Exceeding radial force limit		
Purpose and Objectives	d Design Descript:	n Testing C ion and R	Overview S esults Eng	ystems gineering	Project Janagement	56

Risk Results

Risk	Mitigation	Result
RP1: Baffle deflection	Linear bearing, motor mount piece re- design, more secure motor hold and no binding	Tilt during deployment, MATLAB model predicts adding 0.5° to pre- obscuration and 1° to obscuration
RP2: Shop availability	New shop staff member hired, early morning start times, sent vanes out of house	Three week schedule slip, used testing and manufacturing margin, on time project completion
RP3: Exceeding radial force limit	Motor testing of radial loading, careful handling of motor	Successful deployment testing, no motor jam
RP4: Using dark room	Left lights on except during testing, visually marked fishing line, minimized movement during tests	Successful light attenuation testing with no accidents
RP5: Inaccurate machining	Remade top piece, step measuring	Baffle components, sensor and filter fit properly
Purpose an Objectives	d Design Testing Overview and Results	Systems Engineering Project Management 5

Challenges

Successes:

- Baffle component integration successful
- Test bed integration successful
 - Electronics and structures

Difficulties:

- Optical knowledge required for project
- Manufacturing issues
 - Shop availability, difficulty/ complexity of pieces
- Technical knowledge distribution
 - Subsystem teams became highly technical early on
 - Difficult to redistribute team resources

Design

Description

Lessons Learned

- Electronics testing early was key to project success
- Writing requirements that encompass all facets is difficult
- Everyone should be involved in manufacturing and testing
 - Understanding complexity, necessary for integration expectations
 - Spread out work to alleviate burden on one person for entire subsystem
- Develop test bed design early on
 - Constant changes caused many iterations and unnecessary/ repetitive work
- Design with end game in mind
 - Design for cure, not symptoms: Fixing only one thing at a time just makes more problems

Project Management

Design

Description

Purpose and Objectives

Testing Overview and Results Systems Engineering Project Management

Project Management Approach

• Weekly planning

- Weekly calls with systems lead
 - Plan Monday meetings and the upcoming weeks
- Weekly calls with systems lead and advisor
 - Update on team's progress and schedule
 - Get feedback
- Plan out assignments and break up amongst team
 - Assigning internal deadlines

Objectives

Successes and Difficulties

Successes:

- Difficulties:
- Highest levels of success strived for Communication and achieved • Keeping progress
- Stayed under budget
- Resource utilization
 - Maaco, UCAR/NCAR, CNL
- Time vs money tradeoff

- Keeping progress high when project is at a low
- Schedule slip

Lessons Learned

- Schedule more than enough time then add more margin, early estimates are never accurate
 - 2, π , 5 rule
- Using budget margin to aid schedule
- Have backup plans in place for everything
 - The smallest pieces can take forever to manufacture
- Deadlines come fast no matter how far out you plan
- Communication can always be worked on

Budget Comparison

Industry Cost

Item	Hours	Rate	Total
Work Hours	4272.2	\$31.25 per hour	\$133,506.25
Overhead Cost		200%	\$267,013.50
Project Supplies		\$5000	\$5000
Clean Room Access	31	\$54 per hour	\$1674
Standard Zemax Subscription		\$4900	\$4900
Total			\$412,093.75

Special Thanks

- Surrey Satellite Technology U.S.
 - Scott Taylor
- Project Advisor
 - Josh Stamps
- Senior Design Professor
 - Dr. Nabity
- Maaco
- UCAR/NCAR High Altitude Observatory
 - Scott Sewell
 - Phil Oakley
- CNL

Questions?

[1] Procyon Star Tracker. "Surrey Satellite Technology LTD, [https://www.sstl.co.uk/Products/Subsystems/Actuators-Sensors/Sensors/Procyon-Star-Tracker, Accessed on 4 Apr 2017]

[2] Rigel-L Star Tracker,"Surrey Satellite Technology Limited, [https://www.sstl.co.uk/Products/Subsystems/Actuators-Sensors/Sensors/Rigel-L-Star-Tracker. Accessed on 8 Mar 2017]

[3] Stanley London Premium Quality 13-inch Brass Spyglass Telescope, [https://www.stanleylondon.com/tele13prem.htmAccessed on 7 Mar 2017]]

[4] Marciniak, M., Enright, J., Sinclair, D., Dzanba, T., "Microsatellite Star Tracker Baffles: Validation an Testing," AIAA/USU, [https:digital.library.ryerson.ca/islandora/object/RULA%3A3384. Accessed on 7 Mar 2017]

[5] "S3584-o8 Si photodiode Hamamatsu", BeamQ [http://www.beamq.com/s3584o8-si-pin-photodiode-hamamatsu-p-870.html?zenid=n700emulo4r7rvcsqkm1tma4c5. Accessed on 7 Apr 2017]
 [6] "Cubesat "Jet Propulsion Laboratory, [https://www.jpl.nasa.gov/cubesat/. Accessed on 7 Apr 2017]

Backup Slides

Budget Numbers

	CDR Projection	Final Budget	Difference
Manufacturing	1002	413.3	588.7
Electronics	430	200.53	229.47
Optics	982	1006.94	-24.94
Mechanical	213	269.32	-56.32
Testing	0	910.31	-910.31
Other	0	844.66	-844.66
Margin	2373	1354.94	1018.06
	5000	5000	ο

FR1 – Explanation

(working on drawing these in powerpoint)

FR1 - Uneven Deployment Explanation

FR1 - Uneven Deployment Explanation

$$X = 8.1 * \tan(2.4^{\circ})$$
$$X = 0.34 mm$$

Purpose and Objectives

Design Description Testing Overview and Results Systems Engineering

8.1 mm

Θ

Χ

Χ

74

FR1 - Possible solutions

- These solutions are among some the final recommendations to our customer to make deployment more dependable, if they further develop the project
 - To fix the wobble a more rigid motor mount must be made
 - Manufacturing a new threaded rod would fix the uneven final position

FR1 – Possible Solutions

- Widening the non-threaded section would decrease the possible tilt experienced by the threaded casing
- This new width would be as close to the inner thread diameter of the casing as possible to manufacture

 Current Design
 Wider Non-threaded Rod Section

 Purpose and Objectives
 Design Description
 Testing Overview and Results
 Systems Engineering
 Project Management

Test Results - Effect of Tilt

- Motor side deploys to the optimal height range
- Bearing side fails to fully deploy
 - Corresponds to widening the pre-obscuration angle on the bearing side by 0.555 degrees.

- Expected imperfect deployment, but expected our requirements to still be met
- Difference in height from motor side to bearing side corresponds to tilt of 0.555 degrees

Light Attenuation Test

 Will be testing light attenuation with respect to pointing angle

4.9 m

- Used to validate light attenuation requirements
- Can compare to Zemax data

Zemax Model Results

Critical Angles	Results
Pre-Obscuration Angle	11.1°
Obscuration Angle	20.8°

Data Collection & Post Processing

DAQ connect to LabView Software

- Photodiode generates current, current to voltage op amp circuit, LabView captures voltage
- Initial voltage measured at θ = 0 °
 - Voltage measurement taken every 4 ° from -90 to 90°
 - Taken every 0.1 ° for +/- 2 ° around requirements
 - Power calculated from known resistance and measured voltage
- Relative power will be calculated

Hamamatsu Photodiode [5]

Deployment Testing Overview

- Purpose
 - Ensure baffle deploys to necessary height for optical performance (>86mm)
 - Ensure baffle doesn't over deploy and damage it (<88mm)

Why this would change the game? "There are plenty of cube-sat like star trackers, but many of them don't have the performance or flexibility to accommodate a lot of missions, and traditional fixed baffles take up too much space."

- Scott Taylor, Customer, Systems Engineer Surrey Satellite Technologies

~ Half the mass, one third the size, but all the performance

~

Accomplishments

- Current
 - Numerical model
 - Prototype deployable baffle
 - Deployment test suite
 - Light attenuation test suite
- By end of project (May 2017)
 - Experimental results
 - Verification and validation with Zemax data
- Follow-on Steps
 - Space worthy materials
 - Thermal testing
 - Vibration testing

Linear Bearing

Deployment Testing

Requirements To Be Validated

- Light attenuation testing will verify both requirements
- Will be testing baffle symmetry and asymmetry

Requirement	Percent Light Attenuated	Angle (Degrees)
Pass-Band	5%	>10°
Stop-Band	99.9%	<30°

Light Attenuation Test Procedure

- Take initial power measurement, P_0 , at 0°
- Take power measurements every 4°
- Between 8° and 12°, and 28° and 32°, measurements taken every 0.1°
- Test all baffle orientations

Space Readiness

- Proof of concept design and prototype
- Future Space Readiness concerns
 - Outgassing
 - Corrosion
 - Cold welding
- Mitigation plan
 - Aluminum alloy for baffle material
 - Space grade adhesive
 - Space grade motor and lubricant

Design Decision Validation

Deployment Test Procedure

- Ensure bottom of laser pointer is at acceptable minimum deployment height
- Turn on laser pointer to start deployment
- When fully deployed, laser light to phototransistor will be impeded causing voltage to motor to stop ending deployment
- Repeat for maximum acceptable deployment height

Zemax Validation – Asymmetric Model Results

	Steep Side	Shallow Side
Pre- Obscuration Angle	8.8	10.9
Obscuration Angle	19.7	22.3

Detailed Baffle Design

Vanes

Top Section H = 49mm D = 86mm

Middle Section H = 30mm D = 62mm Bottom Section H = 18mm D = 38mm

Orientation Verification

