Apparatus for Wavefront Error Sensor Measurement:

Manufacturing Status Review

February 7, 2018

Authors: Robert Belter, Ali Colic, Jake Crouse, Lucas Droste, Diego Gomes, Ankit Hriday, Owen Lyke, Brandon Noirot, Owen Shepherd, and Brandon Stetler

Customer: Eliot Young Southwest Research Institute & NASA Glenn Research Center

Ann and H.J. Smead Aerospace Engineering

- 1.1 Motivation
- 1.2 Objectives
- 1.3 CONOPS
- 1.4 Functional Block Diagram
- 1.5 Baseline Design
- 1.6 Critical Manufacturing Elements

1.0 – OVERVIEW

GLENN RESEARCH CENTER

at Lewis Field

1.1 - Motivation

Project AWESoMe will characterize the performance of two wavefront detectors in order to determine which to use on an upcoming balloon optical payload.

Potential benefits of RCWS:

- Simplicity in design One CMOS vs. many microlenslets.
- Optics systems generally have a system for changing the focal length, can therefore use the main image detector.
- The RCWS method has the potential to perform equally or even better than the currently used methods on aerial platforms.
- Future missions could then choose SHA or RCWS systems based on performance data

Shack Hartmann Array

Roddier Curvature Wavefront Sensor

ngineering

1.2 - Objectives

•Quantitatively compare the SHA and RCWS wavefront sensors as a function of source intensity

•Develop a prototype Roddier sensor to be used in the comparison

•Design and build a test platform that facilitates data collection with required precision and accuracy

•Develop forward-predictive models to drive the design and validate results

Present preliminary results

1.3 - CONOPS

1.3.1 – CONOPS Part 1

NASA

GLENN RESEARCH CENTER at Lewis Field

Ann and H.J. Smead Aerospace Engineering s, r UNIVERSITY OF COLORADO BOULDER

ngineering xcellence und NFS

A

1.3.2 – CONOPS Part 2

GLENN RESEARCH CENTER

NASA

6

ngineering

🗖 xcellence

und

A

1.3.3 – CONOPS Part 3

1.4 – Functional Block Diagram (FBD)

GLENN RESEARCH CENTER

at Lewis Field

NASA

Ann and H.J. Smead Aerospace Engineering

NESOM9

💳 xcellence

1.4.1 – FBD Part 1

GLENN RESEARCH CENTER

NASA

Ann and H.J. Smead Aerospace Engineering

زرحا

9

🗖 xcellence

und

A

1.4.2 – FBD Part 2

NASA

1.5 – Baseline Design

Element	Purpose
Image Source	Provide known conditioned state at the input to the system
Optical System	Introduce wavefront error and focus image to sensors
Shack-Hartmann Array	Test Article #1
Roddier Curvature Wavefront Sensor	Test Article #2
Testbed	Align, isolate, and protect optical components
Environmental Sensor System	Track environmental changes
RCWS Algorithm	Compute RCWS Zernike amplitudes from RCWS data
Test Control Software	Automate test procedure and perform data handling

Changes since CDR:

- Alignment stages are purchased rather than manufactured due to required precision
- Range of defocus distances for RCWS significantly reduced because of results from predicted images
- Shroud designed to reduce stray light and air movement in the optical path

NASA

ngineering

🗖 xcellence

1.5.1 – Baseline Design

1.6 – Critical Manufacturing Elements

Region	CPE	Description of CPE Criteria					
Documentation	Test Procedure	Ensures testing is complete and proceeds smoothly					
	Equipment Handling Procedure	Avoid costly mistakes and damage to equipment					
	Data Format Specification	Drives software development and integration					
Software	Wavefront Reconstruction	Meets requirement to develop RCWS system					
	Manual Control	Minimum success of project					
Soliware	Test Control	Allows for much larger data set					
	Teensy Program	Meets environmental sensing requirements					
	Light Enclosure	Reduces lght and air movement effects on results					
Llendurene	Image Source	Provides the test image					
naiuwaie	Mirror Mounts	Complicated part to manufacture, must hold mirrors					
	Environmental HW	Meets environmental sensing requirements					

GLENN RESEARCH CENTER

NASA

xcellence

und

- 2.1 Schedule Overview
- 2.2 Manufacturing Plan
- 2.3 Testing Plan

2.0 – SCHEDULE

NASA

GLENN RESEARCH CENTER

ngineering xcellence

und

2.1 – Schedule Overview

Integration and testing as well as the final experiment cannot proceed without manufacturing and documentation complete.

GLENN RESEARCH CENTER

NASA

ngineering

xcellence

und

2.2 – Manufacturing Plan

NASA

GLENN RESEARCH CENTER

March 2nd : Manufacturing complete.

Hardware and software development occurs independently.

xcellence

und

1007

Feb 19th : Independent software aspects combined into main driver

2.3 – Testing Plan

GLENN RESEARCH CENTER

March 12th : Integration and characterization on optical table.

March 26th : Experiment begins.

April 2nd : Need for re-test evaluated from data

April 9th : Margin for re-test and data analysis.

April 20th : Additional margin for course requirements

ngineering

xcellence

- 3.1 Documentation
- 3.2 Software
- 3.3 Hardware

3.0 – MANUFACTURING

NASA

GLENN RESEARCH CENTER

🚍 xcellence

und

- 3.1.1 Equipment Handling Procedures
- 3.1.2 Testing Procedures
- 3.1.3 Data Format Standardization

3.1 – DOCUMENTATION

NASA

🖵 xcellence

3.1.1 – Equipment Handling Procedures

Component Handling Guidelines:

- Details procedures to be used when transporting/installing each component
- General guidelines for handling, storing, and cleaning optical components
- Specific details for working in the SwRI lab

Component Location Schedule and Checklist Document:

- Tracks when and where components are moved between CU and SwRI
- Eliminates resource conflicts
- Team member sign off sheet for each critical step of transport, installation, and testing

Drafts of both items complete, to be finalized by *Feb. 16th* for integration

NAS

💳 ngineering

A preliminary *Experimental Procedure* has been created. Describes the generalized flow of the experimental process to help direct the development of the interfaces and automation.

- Detailed experimental procedure stepping any user through the experimental process
 - Dependent on user-computer interface, which is still under development.

NASA

- Verification and Validation testing procedures
 - Detailing step-by-step processes for each of the verification and validation tests (six tests).
 - Not necessarily automated.

Test procedures shall be completed by *March 5th*

ngineering

3.1.3 – Date Format Standardization

A specification of data formats is necessary to unify individual SW development and manage resulting data for post-processing.

The specification is finalized, allowing software development to continue and integrate smoothly.

0xA0	0xA1	RT	SN	{PL}	SH	SL	ΜН	ML	CS	0x0D	0x0A
Temperature Sensor Payload:											
Temperature High Byte Temperature Low Byte											
Accelerometer Payload:											
Acceler	ometer F	ayload:									

ngineering

xcellence

- 3.2.1 Wavefront Reconstruction
- 3.2.2 Manual Control
- 3.2.3 Test Control
- 3.2.4 Teensy Program

3.2 – SOFTWARE

NASA

GLENN RESEARCH CENTER

xcellence

und

3.2.1 – Wavefront Reconstruction

$$\frac{I_1(\vec{r}) - I_2(-\vec{r})}{I_1(\vec{r}) + I_2(\vec{r})} = \frac{f(f-l)}{2l} \left[\nabla^2 z(\vec{u}) - \frac{\partial}{\partial u} z(\vec{u}) \delta_c \right]_{u = f\vec{r}/l}$$

Wavefront reconstruction is a critical portion of the RCWS package. The mathematical solution and software implementation may be the limiting factor in RCWS performance.

Current Issues:

- Few solutions are published for reference
- Some examples such as Large Synoptic Survey Telescope code appear to be specialized, and with limited documentation
- The team's lack of optics experience is limiting the efficacy in evaluating the problem, specifically as to whether or not Airy disk patterns will mask the required structures

ngineering

Next Steps:

- Blob detection software can be used to determine first 6 Zernike modes, already implemented for modes 1-4.
- A sub-team is dedicated to studying the mathematical concepts in order to understand and solve the Poisson equation.

Expect to spend February and 2 weeks of March to solve this.

Fortunately, this problem is isolated, thus, does not hinder progress in the rest of the project. However, the wavefront reconstruction is critical for a fair evaluation of the performance of the RCWS.

🗖 ngineering

The experiment can be completed without automated test control as long as the provided software for various hardware items works. This has been **verified** for:

- ThorLabs WFS150-7AR with the ThorLabs-provided software
- QHY174-M and the ASI120MM detectors using COTS software
- ThorLabs motorized optical stages utilizing the ThorLabs-provided software

Proves that all required data can be collected manually. Test control software will allow for faster execution and increased reliability of results.

ngineering

3.2.3 – Test Control

The test control software is designed to automate the collection of 500+ data points. Information determined at each system state includes:

- SHA wavefront measurement
- RCWS fore and aft-focus images
- Environmental sensor data
- Predicted wavefront and images

🗖 xcellence

und

GLENN RESEARCH CENTER

3.2.3.1 – Automation APIs

NASA

GLENN RESEARCH CENTER

at Lewis Field

Outlined boxes are where programs with APIs will be utilized for automation.

(2)

💳 xcellence

3.2.3.1 – Automation API Status

Purpose: The automatic image capture software is to simplify the collection of many iterations of data through computer control of both the image sensors and motorized stages because we have limited time in the optics lab to test.

Current State: Currently becoming familiar with firstand third-party drivers for the image sensors and motorized stages, as these will be the primary method of interfacing with the hardware and will allow for automation of testing.

Next Step: Experimentation with driver functions and creation of rudimentary control programs to validate the functionality on the test hardware.

Biggest Challenge: Debugging the initial problems with utilizing the OS-specific drivers, as there seems to be a very specific set of steps to connect to the hardware.

Automatic Image Capture Progress

<u>CMOS Image Capture Automation</u>: The manufacturer of the CMOS image sensors don't directly provide drivers, so we are reliant on 3rd party drivers to automate the image capture and exposure time. 15%

SHA Image Sensor Automation: The SHA is from ThorLabs, so they provide drivers to support user-developed applications, along with explanations of the provided functions, which will aid development. 20%

Motorized Stage Automation: The motorized stages are also from ThorLabs which come with their own 1st party drivers. This aids with end-user application development.

ngineering

xcellence

Estimated Time Remaining: **50 hours**, based on the amount of hardware which needs to be automated.

3.2.3.2 – Environmental Sensor Data

NASA

GLENN RESEARCH CENTER

Outlined boxes display where the environmental sensor data requires programming.

1-1

💳 xcellence

3.2.3.2 – Environmental Sensor Data Status

<u>Purpose</u>: This software needs to be written in order to transmit the environmental sensor data from the Teensy to the test computer over serial.

<u>Current State</u>: Currently specified data format in which the data will be transmitted for storage (proof of concept was completed last semester).

<u>Next Step</u>: Create an emulator which generates dummy data in the correct format in order to validate data storage so we can move on to writing the sensor-reading code.

Biggest Challenge: Implementing data streaming at the same time as other control functions.

Teensy Communication Software

Teensy Communication: We proved last semester that we could stream data to a computer from the Teensy over serial, as well as sample the environmental sensors at the acceptable rates.

Estimated Time Remaining: **10 hours**, since the group members already have experience with Teensy serial communication and reading sensors.

🗖 ngineering

3.2.3.3 – ZEMAX Automation

<u>Purpose</u>: The optical model in Zemax will be polled for each system state to determine expected wavefront shape. This will validate the results of the wavefront sensors and further help determine accuracy of the RCWS method.

Current State: Python API into Zemax has verified key access and the access the optical path specification file.

Next Step: Programmatically change values in lens file, then save expected Zernike amplitudes to text file.

NAS

Biggest Challenge: Changing the desired data point in the lens file programmatically.

Estimated Time Remaining: 15 hours, because communication between Python and Zemax has already been established, but still need to implement core functionality.

xcellence

____ ngineering

Zemax Expected Results

Zemax Model Automation: We have verified the connection between Zemax and Python, but still need to programmatically change the values in the Zemax model using Python.

20%

Ann and H.J. Smead Aerospace Engineering

3.2.4 – Environmental Sensor Drivers

NASA

Programming Scope:

- Samples from 12 sensors at upwards of 1 kHz
- Data from 12 sensors is time-stamped and written to serial
- Central program handles PC-side serial monitoring / data collection and data storage.

Status:

- Serial monitoring has been tested on the Teensy, PC
- SPI transfers have been tested, need to be scaled for 6 sensors
- Code mostly requires re-tooling, possible GUI addition at this point

Estimated Time Remaining: 8 hours for scaling existing code to 12 sensors and incorporating communication standards.

ngineering

xcellence

- 3.3.1 Light Enclosure
- 3.3.2 Image Source
- 3.3.3 Mirror Mounts
- 3.3.4 Environmental Sensors

3.3 – HARDWARE

3.3.1 – Light Enclosure

Purpose: Reduces air movement and incident light

- Inside painted black to absorb reflected light
- Interlocking design blocks direct light entry
- Black fabric will cover silver optical table surface
- Minimal volume reduces air movement

Status:

- Construction complete
- Still needs to have sealing ring installed on optical table

26.0000-	44.0000

3.3.2 – Image Source

NAS

Purpose: Source directs light into optical fiber to be diffused before pinhole

Scope:

- Mechanical and electronic components to be purchased
- Components require minimal modification

💻 ngineering

3.3.2 – Image Source

In Progress Components:

- Emitter electrical connections and mounts
- Soldering and simple mounting with PCB standoffs
- Testing individual components for out-of-box functionality
 - AC-DC converter works as expected (nominal 12V output)
 - DC-DC booster to be tested (variable voltage and current output)

Next Steps:

- Mechanical rail mounting system, ~3 hrs machining
- Emitter Mount, ~4 hours machining
- Alignment, ~3 hrs
- Secondary shroud, ~2 hrs

37

ngineering

3.3.3 – Mirror Mounts

Unique notched design of mirror mounts allows for close spacing of beams per optical path specs.

- Stock has been ordered from online metals
- Expected machine time: ~16 hrs for 2 mounts

Other mounts to manufacture:

- Pellicle Mount: ~6 hrs
- CMOS Camera Mount: ~4 hrs

ngineering

3.3.4 – Environmental Sensors

Parts Not Yet Acquired:

- Sensor Circuit Boards + Teensy Connector Board
- Temperature caps (manufactured)
- Adhesive Pads

Parts Acquired:

• ICs (OR gates, ADXL345, ADT7320)

ngineering

- Connectors
- Capacitors
- Teensy

- The ICs, connectors, capacitors, and the Teensy will all be soldered to the designed PCBs
- Temperature caps are non-crucial, and will be 3D-printed for the temperature sensors
- Adhesive pads will be used for mounting the accelerometers

NASA

3.3.4 – Environmental Sensors

Circuit Board Status:

- Design completed / reviewed
- PCB order placed January 25th, expected February 5th

NAS

Tasks remaining: populating PCBs, make cables for sensors
– Estimate: 10-12 hours for soldering, error-checking

Ann and H.J. Smead Aerospace Engineering

🗖 ngineering

4.1 – Budget Overview4.2 – Ordering Status

4.0 – BUDGET

NASA

GLENN RESEARCH CENTER

at Lewis Field

ngineering xcellence

und

4.1 – Budget Overview

NASA

	By Funding Source								
	Source/Sink	USD (\$)		Percent of Total Funding					
	Class Budget	-	5000	-38.46%					
Funding	EEF	-	3000	-23.08%					
	NASA Glenn	-	5000	-38.46%					
	Class + EEF	\$ 5,08	7.57	63.59%					
Expected Spending:	SwRI/NASA Glenn	\$ 5,37	9.15	107.58%					
	Class + EEF	\$ 4,35	2.13	54.40%					
Funds Spent	SwRI/NASA Glenn	\$ 5,37	9.15	107.58%					

Class + EEF Funding:

54.4% spent, 63.6% expected use

Equipment on Loan:

ThorLabs Shack-Hartmann Array

ngineering

xcellence

- QHY174M detector
- ThorLabs motorized stages
- Lab space

A	в	c	D	E	F	G	н	1	- 1	к	L	M	N	0	P
1								A\A/	ESoM	lo Bill (of Mot	oriale			
2								~~~	LOUIV			cilais			
3	Project ID	Name	Order Number	Ordered	Received	Purpose	Manufacturer	Manufacturer ID	Source	Source ID	Quantity	Cost Each (S)	Discount Each (%)	Subtotal (\$)	Export Controlled Material?
4															
5	0-1	Parabolic Mirror	P2	6.18	1.19.18		Edmund Optics	32-069-533	Edmund Optics	32-069-533		2 675	6 1	0 135	No
6	0-2	Pellicle Beamspilter	P2	6.18	1.19.18		Edmund Optics	39-481	Edmund Optics	39-481		2 170		0 34	No
7	0-3	Clamp	P6	5.18	1.31.18	amping to table	ThorLabs Thord also	CF125	ThorLabs Thord also	CF125		8.9	i I	8.9	
9	0-5	Post	P6	5.18	1.31.18	ading posts pst	ThorLabs	TR4	ThorLabs	TR4		5.8		0 5.8	
~															
11	T-1	PY00428	so	4.18	1.30.18	2 pitch and yaw atform	ThorLabs	PY00428	ThorLabs	PY00428		2113.44	-10		
12		074.30			1 20 40	CWS translation	Theodore	074 30	Thurd also	074 30					
	112	F11120	30	N. 10	1.30.10	ower supply for 3	Thoreaus	FILLD	Thoreads	P11120		040.46			
4	T-3	KCH301	S0	4.28	1.30.18	otors	ThorLabs Thord also	KCH301	ThorLabs ThorLabs	KCH301		1 494.1	-10	0 1	
		NO TOT	~			grment traverse	The Case	NOC IVI	Thoreages	NDO IVI		000.04			
16	T-5 T-6	PT1-8 KM100 WES	P6 P6	5.18	1.31.18	age	ThorLabs Thorl she	PT1-8 KM101WES	ThorLabs ThorLabs	PT1-8 KM100 WES		215.22		0 1506.5	
7	T-7	PY003	P6	5.18	1.31.18	CWS to the	ThorLabs	PY003	ThorLabs	PY003		214.24		0 214.2	
										Image Detecto	8				
9	D-1	ASI120MM-S OHV 174M		ve	Possession	MOS Detector	ZWS	ASI120S OHV 174M	Eliot	ASI120S OHY 174M		195	-10		
1	D-3	WFS150-7AR		ve	Possession	A	ThorLabs	WFS150-7AR	Elict	WFS150-7AR		4005	-10	0	
2															
										Image Source					
3	14	LH-XP-100W-6000k	P5	4.18	1.30.18	niter	AM2NSPCL More Well	LH-XP-100W-600	Amazon	LH-XP-100W-8		12.85		0 12.8	
• 5	1-2	GREE U024V	P5	4.18	1.30.18	pwer Supply bost Converter	GREE	GREE U024V	Amazon	GREE U074V		11.65		25. 0 11.6	
	1-4	Heatsink		.18		atsink	Advanced Thermal Slutions Inc.	ATS-54170W-C1-R	DigKey	ATS1247-ND		7.7		0 7.7	
	1-5	LB1106-A	P6	5.18	1.31.18	convex lens	ThorLabs	LB1106-A	ThorLabs	LB1106-A		43.1		0 43.1	
	1-6	FCM32	P6	5.18	1.31.18	ber Mount	ThorLabs	FCM32M	ThorLabs	FCM32/M		74.5		0 74.5 0 45.21	
	1-8	ACL25416U-A	P6	5.18	1.31.18	andenser Lens	ThorLabs	ACL25416U-A	ThorLabs	ACL25416U-A		27.5		0 27.5	
	1-9	LMR2	P6	5.18	1.31.18	ts mount	ThorLabs Thord also	LMR2	ThorLabs Thoria ha	LMR2		25.76	6	0 25.7	
	1-11	CP02	P6	5.18	1.31.18	aming ring age Plate	ThorLabs	CP02	ThorLabs	CP02		10.51	1	U.5 0 16.4	
	I-12	SM1L05	P6	5.18	1.31.18	ins tube	ThorLabs	SM1L05	ThorLabs	SM1L05		12.56) (0 12.5	
5	1-13	TR1	P6	5.18	1.31.18	st	Thofabs	TRIV	Thoriabs	TR1V		4.74		9.4	
7	1-15	TR1.5	P6	5.18	1.31.18	at	Thofabs	TR1.5V	Thoriabs	TR1.5V		4.9		0 4.9	
8	I-16	M105L02S-8	P6	5.18	1.31.18	ber optic cable	ThorLabs	M105L02S-8	ThorLabs	M105L02S-8		131.58		0 131.5	
9	1-17	LMR1	P6	5.18	1.31.18	nhole mount	ThorLabs	LMR1	ThorLabs	LMR1		1 15.23	6 I	0 15.2	
•										Tendencemental De					
1	E-1	Teensv3.6	P3	6.18	1,23,18	crocontroller	PJRC	Teensv3.6	PJRC	Teensv3.6	5015 -	29.23	i I	29.2	
2					177.45		Andre Devices las		Delay	ADXL344ACCZ					
3	E-2 E-3	ADXL344ACC2-RL7 ADT7320UCPZ-RL7CT	P4	7.18	1.22.18	roperature sensor	Analog Devices Inc. Analog Devices Inc.	ADXL344ACC2-RL ADT7320UCPZ-RL	Digkey	ADT7325UCPZ-F	1	J 3.041 D 6.934		0 30.4	
6		8 Die Hander M			1 22 19	PI Sensor	Amahanai		Diskar	200.0204.0.10		0.67			
	-	o rim meader M		7.16	- 22.10	Pl Sensor	- Angeleige	20021121-0000804	Jyney	009-3039-2-ND	3	. u.605		- 16.2	
	E-5	8 Pin Header F	P4	7.18	1.22.18	prinection	Amphenol	20021311-0000874	l DigKey	609-3753-ND	3	0.596	6	0 17.8	
	E-7	0.1uF cap	P4	7.18	1.22.18	tuF cap	wanity beysoning Murata Electronics North America	MC106030C1002F GRM188R71C1048	DigiKey	MC10603-10.0K- 490-1532-1-ND	10	0.0596	5	5.94 0 3.14	
	E-8	Regulator	P4	7.18	1.22.18	3V Regulator	Exar Corporation	SPX1117M3-L-3-3/	DigKey	1016-1848-1-ND	1	0.376	1	0 3.71	
	E-9	Male Header	P4	7.18	1.22.18	ale Header	Sullins Connector Solutions	PRPC040SAAN-R0	DigKey	\$1011EC-40-ND	1	0.5%		0 5.9	
	E-11	Cables	P4	7.18	1.22.18	ansor Cables	Tensility International Corp	30-00510	DigiKey	T1347-5-ND	-	1 9.96		0 9.9	
2	E-12	Solder Paste	P4	7.18	1.22.18	der Paste	Chip Quik Inc.	SMD291AX50T3	DigKey	SMD291AX50T3		12.9	1	0 12.9	
	E-13	UR gate		.18		R gate	Nexperia USA Inc.	r4HC32D,652	uigKey	1727-3786-ND	1	0.25		2.1	
4										Materials 110					
									Rav	Materials / Misc	iianeous				
	R-1	NA				tical table	N/A	SwRI	NIA	SwRI		100000	-10	0 1	No
	R-2 R-3	PCB Manufacturing Autuminum har	P7 P8	5.18 0.18		w. Sensor PCB	Seeed OnlineMetals	NA	SeeedStudio McMaster Cerry	NA	-	14.1		0 14.3 0 79.4	No
		Number of Street	-			mperature sensor									-
	M-4	Auminum rod		18		R coating on									
	R-5	Powder coat		.18		punts								0 1	No
	R-6 R-7	Gloves Masks		0.18		oves							-	0 I	No
	R-9	Foam	P10	0.18	1.30.18	rciosure	N/A	NA	Home Depot	#207179253		18.96		0 37.9	No
	R-10	Spray paint	P10	0.18	1.30.18	rciosure	N/A	NA	Home Depot	#202097745		3.90		3.9	No
	N-11	apray adhesive	P10	0.04	100	ciosure	NA	NĂ	nome Depot	#100184611		5.71		5.7	ND
5										Chinak					
		P2 - Edmunds Onlive								sapping					
	S-1	#1									-	10.96		0 10.99	
	S-2 S-3	P3 - PJRC Order #1 P4 - Dickey										3.11		0 3.1	
	S-4	P5 - Amazon										1		0 1	
	S-5	P6 - Thoriabs on P Ca	ard									14.9		0 14.9	
	5-0	rrd - OnineMetals										22.55		u 22.5	

4.2 – Ordering Status

Planned:

• All planned items have been ordered

Pending:

- ThorLabs KDC101 Motor Controller (1 of 3)
- Gloves
- Masks

NASA

- LED heatsink
- OR gates
- Aluminum rod
- Fasteners
- Powdercoat

All other components have been received. Lead times not expected for any of above items.

ngineering

xcellence

QUESTIONS?

GLENN RESEARCH CENTER at Lewis Field

BACKUP SLIDES

NASA

GLENN RESEARCH CENTER

at Lewis Field

45

ngineering

und

(3)

Test Control FBD

s;

Data Standardization Document

NAS

- 1. User specifies a "schedule" of states to test
- 2. Test control program reads the test specification and creates timestamped subfolders for each state of the system.
- 3. Each sub-folder can stand alone with required state information, raw data from sensors, predicted results, and reconstructed wavefronts.

ngineering

xcellence

Environmental Sensors – Timing Diagram

GLENN RESEARCH CENTER

NASA

ل ال

48

1=7

🗖 xcellence

Environmental Sensors – Data Rate Testing

- Serial Read Data Rates were constructed using Python with pyserial, Windows 10, and a Teensy 3.6.
- For Data checking, the Teensy had been set to count from 0 to 99 endlessly while streaming the data over serial. The data was detected to have zero errors.
- Tests were run with varying time intervals of 1, 5, 8, 10, 12, 20, 30, 40, 50, and 60s

Serial Testing Results

Average Data	Total Number	Total Time	Tests
Rate: [kBps]	of Bytes Sent	Taken: [s]	Conducted:
1086.041	256754500	236.066	10

Generic SPI Device Testing Results

Average Switching Time [µs]	Average 48- bit Read Time [µs]	Total Number of Switches and Reads	Tests Conducted
0.5104	12.976	465572	10

NASA

 SPI testing was completed with two generic accelerometers, testing read time and the time required to switch between sensors

ngineering

xcellence

Environmental Sensors – Sensor Characteristics

- **Component Choices:**
 - Microcontroller: Teensy 3.6
 - PC Interface : Serial USB connection
 - Accelerometer: ADXL 344
 - Temperature Sensor: ADT7320
 - **Overall Schematic** •

ADXL344 Requirements and Performance							
	Sampling Rate	SPI Data Rate	Resolution	Filtering?			
Requirement:	1 kHz	0.55 MHz	NA	Yes			
ADXL-344 Performance	3.2 kHz (Maximum)	5 MHz (≈ 5 <i>Mbps</i>)	<u>+</u> 3.9mg	Yes			

ngineering

💳 xcellence

und

ADT7320 Requirements and Performance									
	Sampling Rate	SPI Data Rate	Resolution 16 bit (13 bit) [°C]	Accuracy [°C]	Filtering?				
Requirement:	1 Hz	0.55 MHz	<u>+</u> 0.15	<u>+</u> 0.5	No				
ADT7320	4 Hz (Maximum)	5MHz ($\approx 5Mbps$)	±0.0078 (±0.0625)	<u>+</u> 0.31	No				

GLENN RESEARCH CENTER

NASA

Wavefront Reconstruction

$$\frac{I_1(\vec{r}) - I_2(-\vec{r})}{I_1(\vec{r}) + I_2(\vec{r})}$$

$$= \frac{f(f-l)}{2l} \left[\nabla^2 z(\vec{u}) - \frac{\partial}{\partial u} z(\vec{u}) \delta_c \right]_{u = f\vec{\tau}/l}$$

This is the data collected by the test setup

The wavefront (z) is the structure of interest that should be solved for.

- This expression leaves out terms due to diffraction because of assumptions made in the original paper
- To obtain a general solution this relationship would need to be re-derived including the diffraction terms
- At that point a forward-model would exist, but a simple solution for z is not guaranteed.
- A numerical solution could likely be found, however the work required exceeds the capabilities of the team

NAS

ngineering

xcellence