ASEN 4028 Senior Projects - Spring 2019 Test Readiness Review

Auto-Tracking RF Ground Unit for S-Band

Te am: Trevor Barth, Anahid Blaisdell, Adam Dodge, Geraldine Fuentes, Thomas Fulton, Adam Hess, Janell Lopez, Diana Mata, Tyler Murphy, Stuart Penkowsky, Michael Tzimourakas

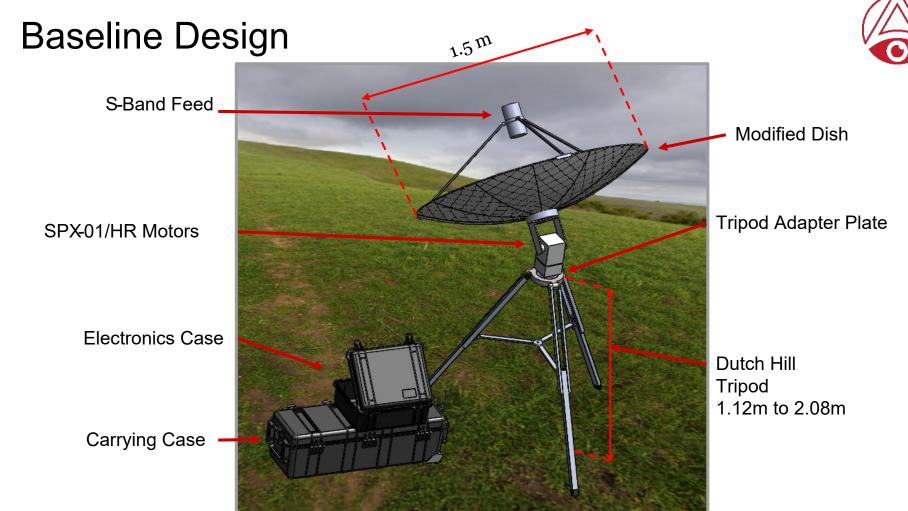
Advisor: Professor Dennis Akos

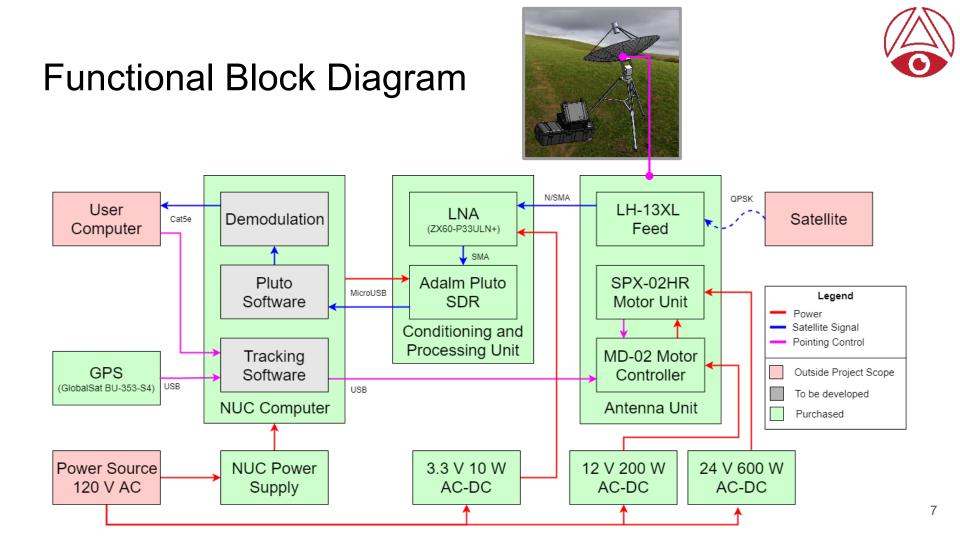
Project Overview

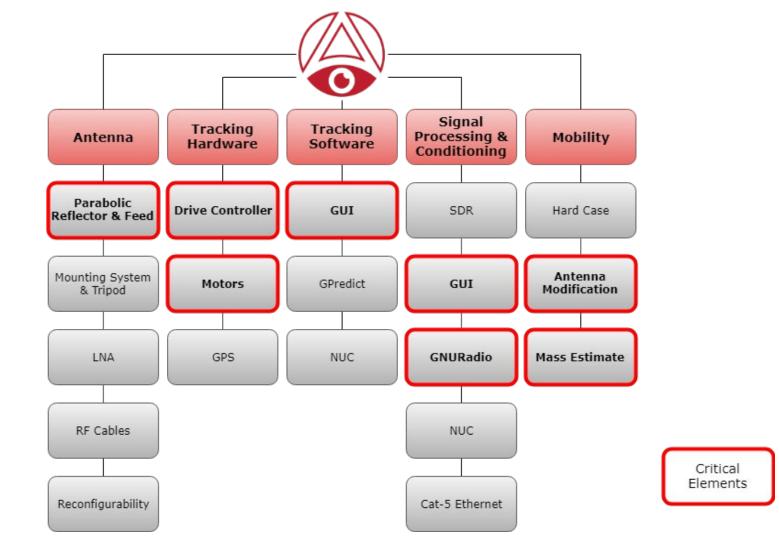
Project Purpose & Objectives

<u>Mission Statement:</u> The ARGUS ground station is designed to be able to track a LEO satellite and receive a telemetry downlink using a platform that is both portable and more affordable than current S-Band ground stations.

- Commercial-off-the-shelf (COTS) where possible
- Interface with user laptop
- Portable: 46.3 kg (102 lbs), able to be carried a distance of 100 meters by two people







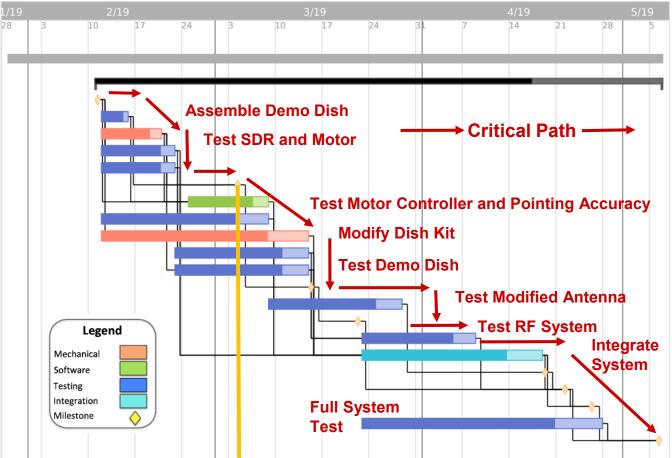
Levels of Success

	Mechanical	Software	Electronics
Level 1	 Transportable in back of truck Assembled < 6 hours Track LEO satellites at 5%sec Communicate with LEO satellite at 10+° elevation above horizon 	- Take TLE data and for az/el pointing commands - Data packets demodulated using QPSK - BER ≤ 10	- Provide power to all sub - systems - System used with monitor, keyboard, and mouse
Level 2	 Transportable by unpowered rolling vehicle Assembled <2 hours 	 Able to predict LEO satellite locations to less than 2.75° deg accuracy Reconfigurable for other frequency bands 	- System used with personal laptop interfaced using secure shell over a Cat-5 ethernet cable - Reconfigurable for other frequency bands
Level 3	- Two people carry 100 meters - Assembled < 1 hour	-BER ≤ 1 0	

Updates from MSR

• Electrical relay on motor controller shorted during component testing

- Replaced relay, motor tested 2/22, full range of motion functionality
- Demo-dish testing and pointing accuracy testing is now delayed
- All software component tests are complete
- Modified dish being worked on
 - Adapter plates made (2/15)
 - Tabs cut (2/22)


Project Schedule

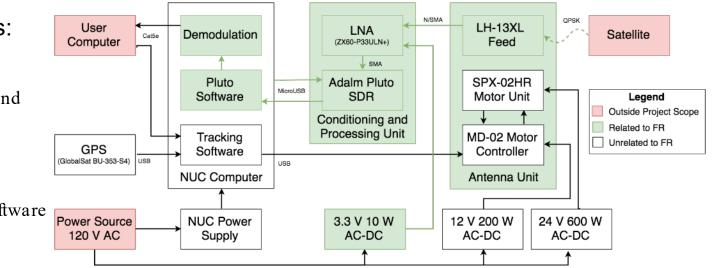
Schedule

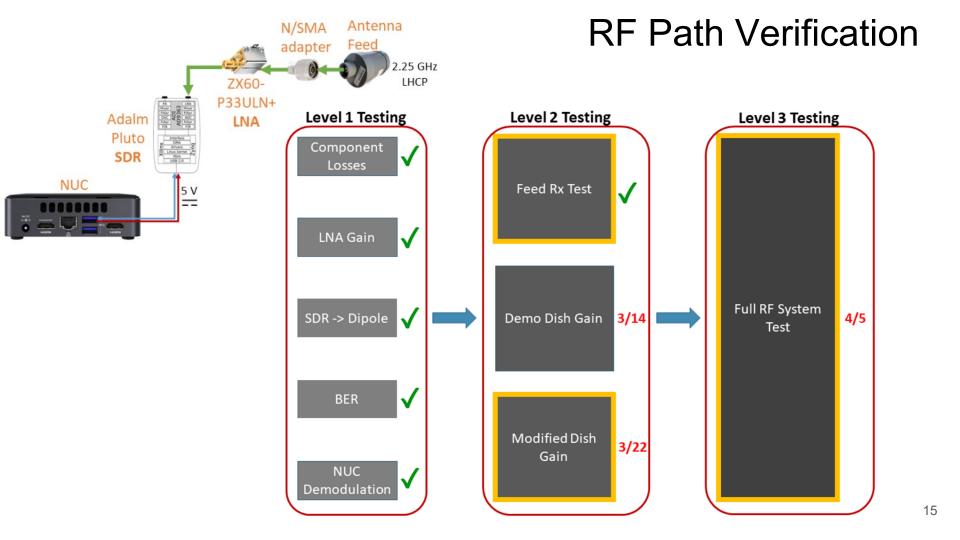
ARGUS

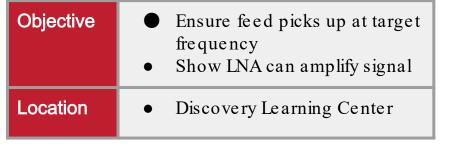
Spring Semester MSR **Test RF Component Losses** Assemble Full Demo Dish Test SDR Motor Testing TRR Calibrate Tracking Software Motor-Controller Testing Modify Dish Kit Test Pointing Accuracy Test Demo Dish **AIAA Paper Due** Test Modified Antenna Last Machining Day Test Full RF System **Fully Integrate System AES Industry Symposium** SFR College Expo Test Full System **Final Report Due**

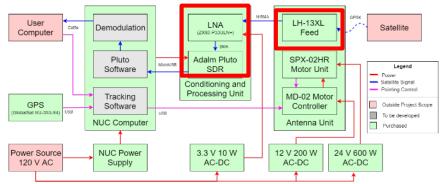
Test Readiness

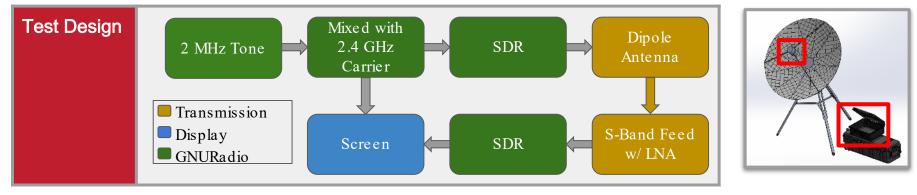
Functional Requirement 1


FR 1	.0	The ground station shall be capable of receiving signals from a Low Earth Orbit satellite between 2.2 - 2.3 GHz, in Quadrature Phase Shift Keying (QPSK) modulation with a Bit	
		Error Rate (BER) of 10 a bit rate of 2 Mbit/s, and a G/T of 3 dB/K.	

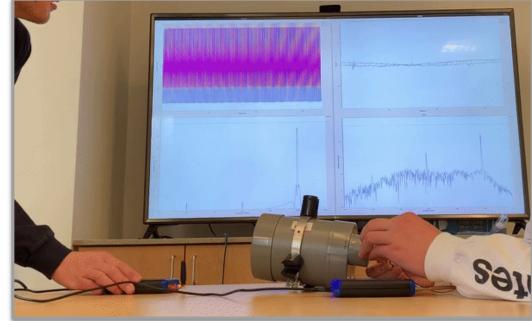

RF Path Verification


Related Components:


- Antenna dish
- Feed
- Low noise amplifier and power converter
- N-SMA adapter
- SMA cables and passthrough
- Signal processing software
- MicroUSB cables
- Adalm Pluto SDRs

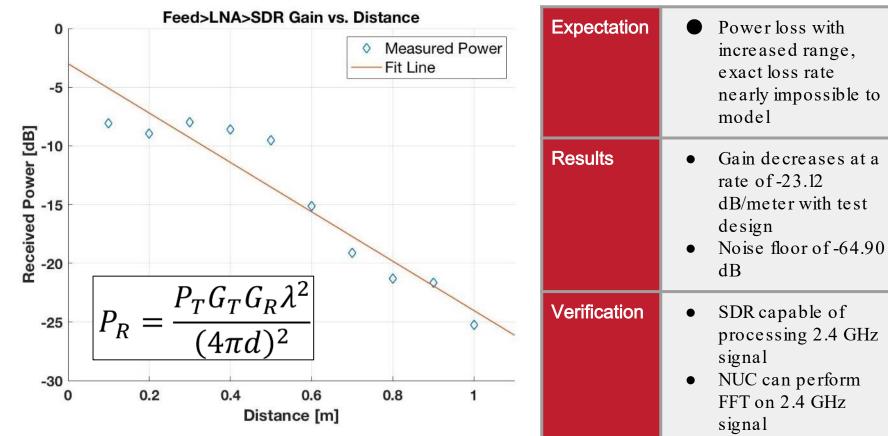


Level 2 - Feed Rx Test with LNA and SDR \checkmark Complete



Level 2 - Feed Rx Test with LNA and SDR Complete

Safety	• No concerns
Project Risk Mitigation	 Shows that feed can pick up target frequency LNA capable of amplifying target frequency SDR can process target frequency



Requirement

DR 1.1: The ground station shall receive between 2.2 GHz and 2.3 GHz

Feed Rx Test with LNA and SDR Results

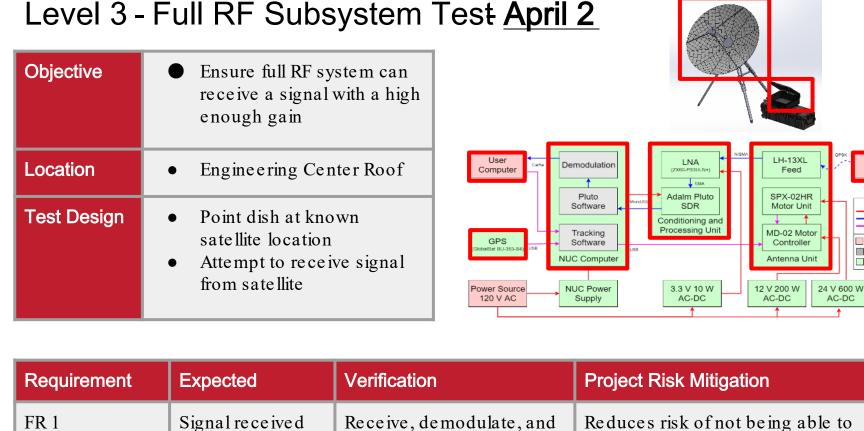
18

Level 2- Demo and Modified Dish Gain-March 14 & 22

Objective	 Ensure dish will have enough gain to validate link budget Analyze gain change between demo and modified dish 	
Location	• Business Field	User Computer Casto Demodulation Demodulation
Test Design	 Use SDR to transmit tone at 2.4 GHz Analyze power level received by feed alone and demo dish with feed on network analyzer Repeat test conditions with modified dish 	GPS USU NUC Computer Los Adalm Pluto SPX-02HR NUC Computer NUC Computer MD-02 Motor NUC Power 3.3 V 10 W Ac-DC 12 V 200 W

Requirement	Expected	Verification	Project Risk Mitigation
DR 1.5: The ground station antenna shall have a gain of at least 24.3 dBi.	27 dB gain from antenna	Network analyzer power levels	Reduces risk of not having enough gain to receive signal

Satellite


Legend

Outside Project Scope To be developed

Power - Satellite Signal Painting Control

Purchased

24 V 600 W AC-DC

save incoming data

Satellite

Prove: Satellite Signal

Purchased

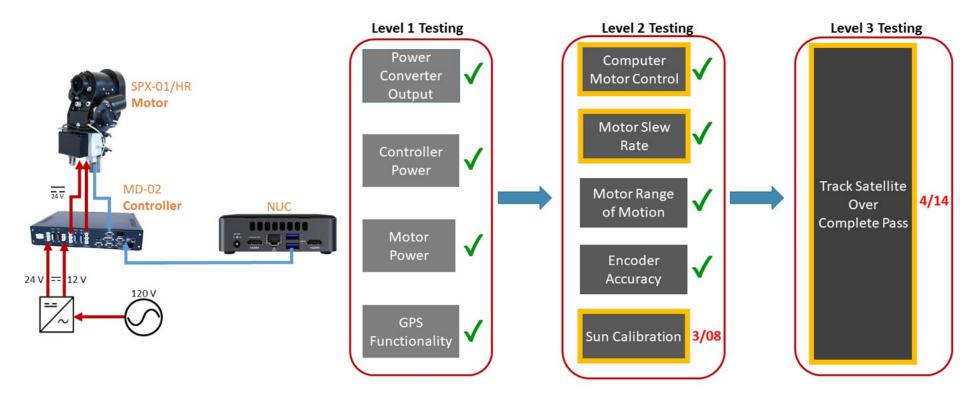
AC-DC

receive a signal

Legend

Outside Project Scope To be developed

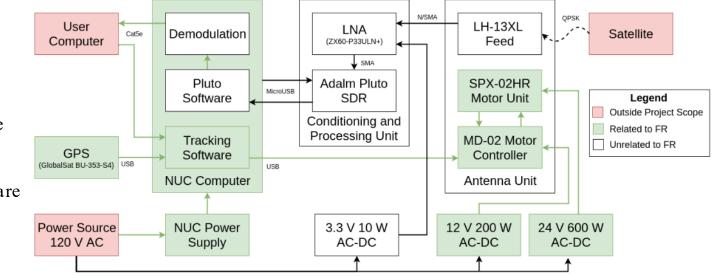
Pointing Control



Functional Requirement 2

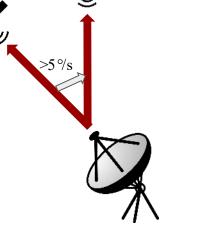
FR 2.0The ground station shall mechanically steer a dish/antenna system to follow
a LEO satellite between 200 km to 600 km between 10° elevation and 170°
elevation.

Tracking Verification



Tracking Verification

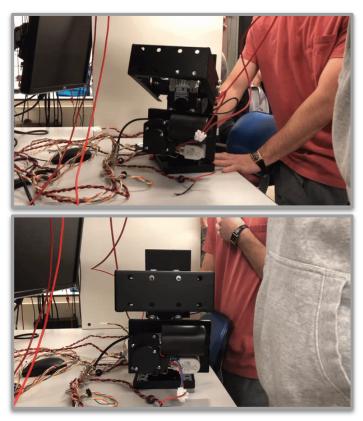
Related Components:


- GPS
- Motors + controller
- Power converters
- NUC computer and power supply
- Cat-5 ethernet cable
- GUI
- Tracking software
- Motor control software
- USB type B cable

Run 3 trials in each direction				R	
Inputs	Requirement	Expected	Verification	Project Risk Mitigation	Safety
Angle Command	DR 2.3: The antenna motor shall be able to move the antenna at a slew rate of 5%	Slew rate: 7.2%	Slew time less than 36 seconds	Motor can slew at speed required for tracking LEO satellite	High voltage ¤t

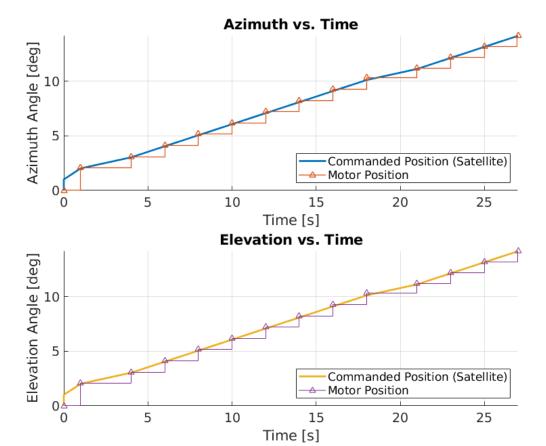
Level 2 - Motor Slew Rate Test Design 🗸 Complete

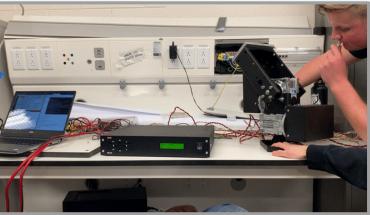
Objective	Ensure motor can move at 5/s	
Location	Senior Projects Room	
Test Design	 Give motor a command to rotate 180° Verify that it rotates in less than 36 seconds Run 3 trials in each direction 	



Level 2 - Motor Slew Rate Test Results

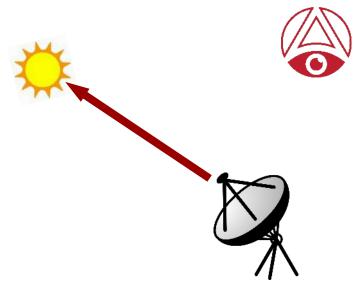
Direction	Average Slew Time (3 Trials)	Average Slew Rate
Expected per Spec Sheet	25 sec	7.2 degrees/sec
Azimuth: 0° to 180°	30.76 sec	5.852 degrees/sec
Azimuth: 180° to 0°	30.29 sec	5.942 degrees/sec
Elevation: 0° to 180°	30.21 sec	5.958 degrees/sec
Elevation: 180 to 0°	29.99 sec	6.002 degrees/sec




Objective	Ensure GUI can control motor to follow a satellite through a pass	
Location	Trudy's Lab	
Test Design	 Create a set of simulated passes Ensure motor control software can control motor to follow passes 	

Inputs	Requirement	Expected	Verification	Project Risk Mitigation
Simulated passes	FR 2	Motor will follow all simulated passes accurately	Ensure motor can follow all simulated passes	Ensures that motor can track LEO satellite accurately

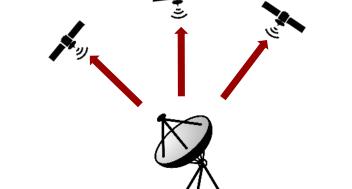
Level 2 - Motor Control Software System Test Results



Results	Maximum discrepancy between satellite path and motor pointing is 2.86 degrees . This
	remains within expected
	antenna beamwidth.

Level 2- Sun Calibration - March 8

Objective	Ensure system can see the sun in the power spectrum	
Location	Engineering Center Roof	
Test Design	 Point dish at sun Ensure power can be seen in frequency spectrum and location can be fine tuned using power spike 	



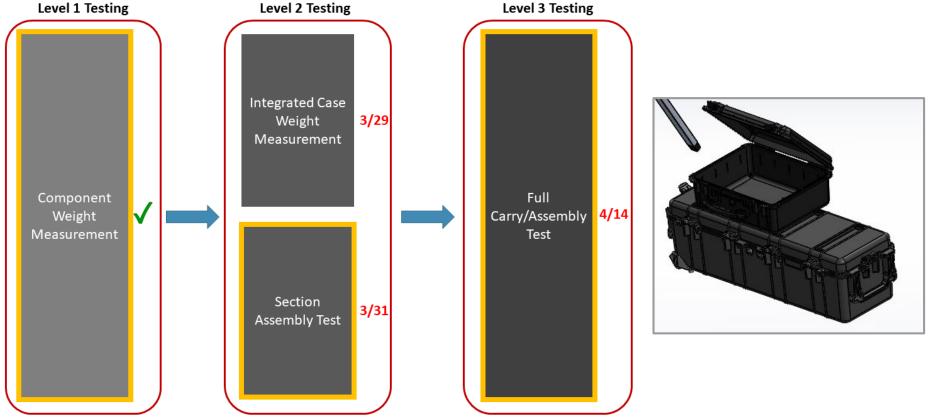
28

Inputs	Requirement	Expected	Verification	Project Risk Mitigation	Safety
Sun location	DR 2.2: The pointing control accuracy must be within 4.5° to maintain downlink capabilities throughout the entire pass.	Sun shows up in frequency spectrum	Ensure sun can be seen in frequency spectrum and be able to find maximum power	Ensures that motor can be calibrated to reduce pointing error	High voltage & current

Level 3 - Full Tracking Subsystem Test - April 14

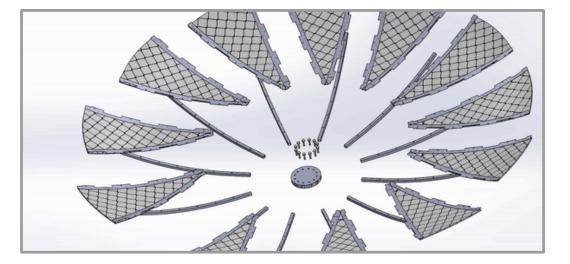
Objective	Ensure ground station can follow satellite over a pass					
Location	Engineering Center Roof					
Test Design	 Assemble NUC, motor, motor controller, dish, and tripod Use user laptop to control ground station over a satellite pass 					

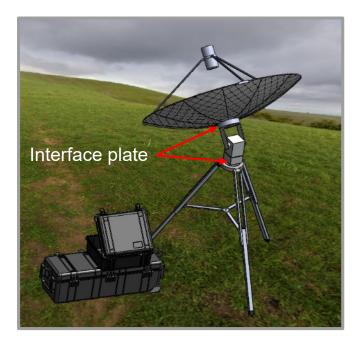
Inputs	Requirement	Expected	Verification	Project Risk Mitigation	Safety
Sate llite TLE file from SWAS and SWIFT	FR 2	Signal to noise ratio around 17.21	Signal received from tracked satellite	Ensures that entire tracking subsystem functions as desired	High voltage & current



Functional Requirement 4

FR 4.0 ARGUS shall weigh less than 46.3 kg (102 lbs) and be capable of being carried a distance of 100 meters by two people.

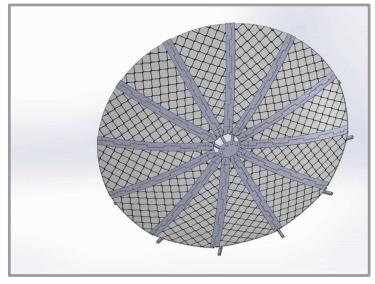

Mobility Verification



Assembly Explanation

Level 1- Component Weights <a>✓ Complete

Objective	 Verify component weight compared to spec sheets Estimate final system total weight
Location	• Senior Projects Room
Test Design	• Weigh components on scale

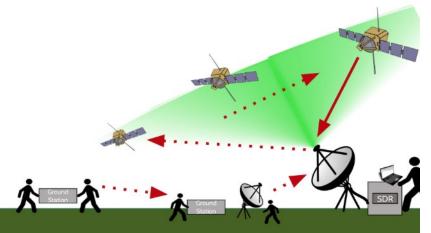

Component	Weight [kg]		
Dish original hardware	2.63	Feed	0.57
Dish modifications	4.22	Tripod	5.82
Electronics	5.02	Cases	T.B.D
Motor	13.51	Power	2.83

Requirement	Expected	Verification	Project Risk Mitigation	Current Total	34.59 kg
DR 4.1: The ground station shall weigh	Entire system weight less	Weighed components	Ensure system can be carried into the	Maximum	46.3 kg
less than 46.3 kg.	than 46.3 kg	on scale	fie ld		33

Level 2 - Dish Section Assembly- March 22

Objective	 Verify assembly time Determine amount of tools and components needed
Location	• Senior Projects Room
Test Design	• Replicate in field assembly

Requirement	Expected	Verification	Project Risk Mitigation	Safety
DR 4.2: ARGUS shall be able to be assembled by 2 operators in less than 60 minutes.	Assembly time is less than 60 minutes with <2 tools	Timed two person assembly test	Ensures dish can be assembled in required amount of time	Cuts or injuries assembling dish



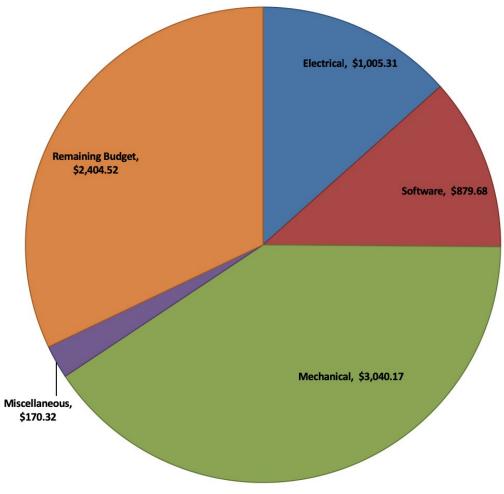
Full System Test

Full System Test- April 14

1	7.5
	$\Delta $

Objective	Verify entire ground station functions as desired	
Location	Business Field	
Test Design	 Transport and set up ground station Track satellite across entire pass Receive signal from satellite 	

Data Needed	Requirement	Expected	Verification	Project Risk Mitigation	Safety
Sate llite TLE file, transmit frequency, and data rate	All FR's	System functions correctly	Ensure signal is received	Ensures complete ground station functions as desired	Injuries carrying system, high voltage & current



Budget

Budget Spent

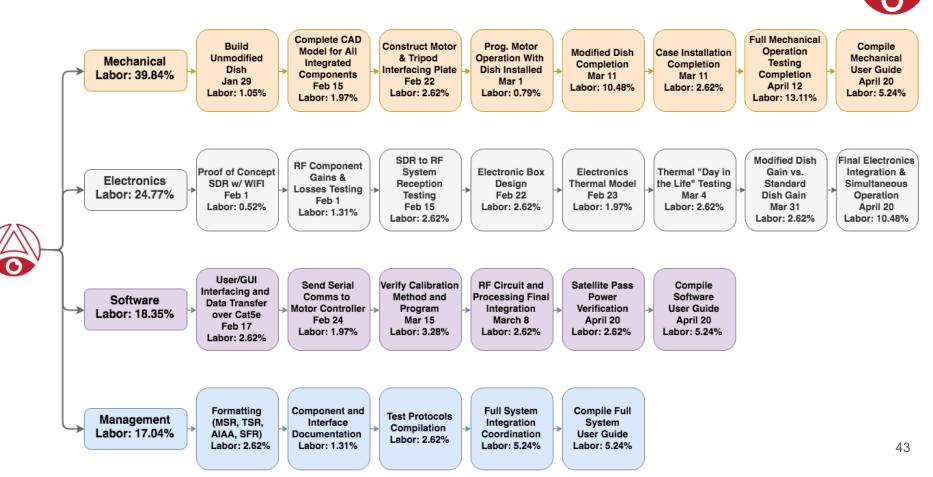
Subsystem	Cost \$
Electrical	1005.31
Software	879.68
Mechanical	3040.17
Miscellaneous	170.32
Money Spent	5095.48
EEF Grant	+2500
Remaining Budget	2404.52
Total	7500.00

Forward Looking

Procurement				
Item	Status	Date Needed by		
TravelCases	Not Purchased	3/22/19		
Capacitor	Not Purchased	3/22/19		

32.06% margin left in budget

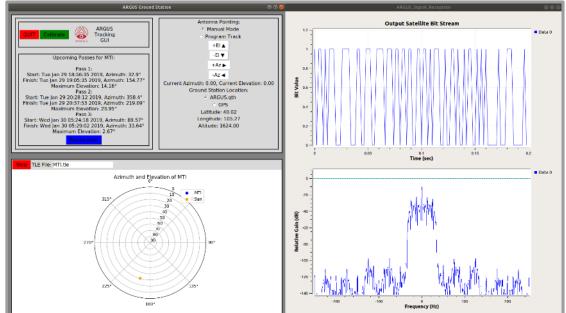
Questions?



Backup Slides

Management

Task Breakdown Structure



Tracking Hardware Subsystem

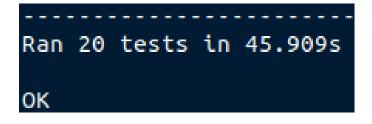
FR 2.0The ground station shall mechanically steer a dish/antenna system to follow
a LEO satellite between 200 km to 600 km between 10° elevation and 170°
elevation.

Software - Overview

- Overview:
 - Tracks and displays future passes and current location of specified sate llite
 - Control antenna pointing position
 - Receive signal, display, and save bit stream to file
- Inputs:
 - Lat/Lon/Alt from GPS or QTH file
 - \circ TLE text file
 - Signal Frequency & Bandwidth
 - Adalm Pluto Signal
- Outputs:
 - Binary text file of demodulated signal
 - Tracking GUI & Signal Processing GUI

Level 1 Motor Functionality and Power

✓ Complete



Objective	• Ensure and mo control workin togethe correct	ller are g er			
Location Test Design	 Trudy's Test al direction full ran 	l four ons and	Result:	Motor works as expected & desire	d
	motion			1	
Data Needed	Requirement	Expected	d Verification		Risk
None	DR 2.1, 2.4		oves to all and in all s	Ensure motor can move in every direction and over full range of motion	 High voltage/current Reduces risk By:

46

Level 2- Motor Control Software Unit Testing

Data Needed		Requirement	Expec
Test Design	•	Create a set of un tests for each par software Run unit tests with motor controller, motor, and GPS connected to NUC	t of 1
Location	• Engineering Center Roof		er
Objective	• Ensure all software functions as desired		-

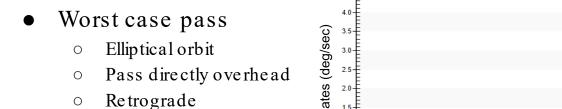
✓ Complete

Result: All tests pass.

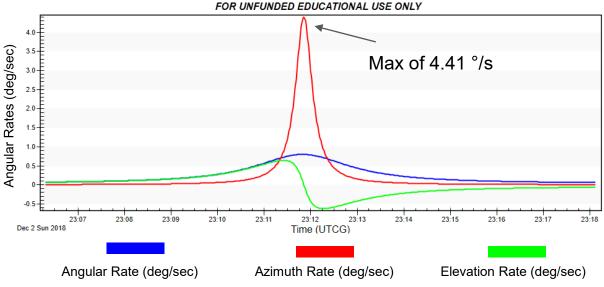
Data Needed	Requirement	Expected	Verification	Risk
None	FR 2	All Tests Pass	All Tests Pass	Hard to Unit test GUI'sReduces Risk By:

Level 1 GPS Functionality Test

Objective	 Ensure GPS Data is accurate GPS is used to determine satellite position Determine measurement time needed for accurate data 	
Location	DLC Roof	
Test Design	 Record GPS data and compare to Google Maps data Compare accuracy of different measurement lengths 	

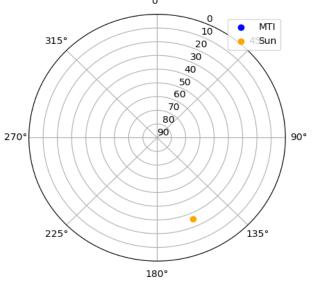

Result: GPS is accurate to less than 10 meters.

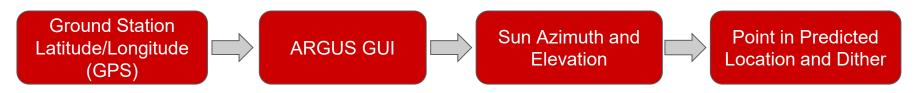
Data Needed	Requirement	Expected	Verification	Risk
Google Maps Data GPS Data	DR 2.2	Accurate to ±3 meters	Data matches Google Maps	Multipath


STK: Tracking Rate Verification

DR 2.3 The antenna motor shall be able to move the antenna at a slew rate of **5.0** %

• Max Rate: 4.41 %


Azimuth and Elevation Calibration


DR 2.2 The pointing control accuracy must be within **3.25°** to maintain downlink capabilities throughout the entire pass.

- Manual Control Frame Dither around Sun, find strongest signal strength
- Calibration Frame Set current pointing angles to predicted Sun location

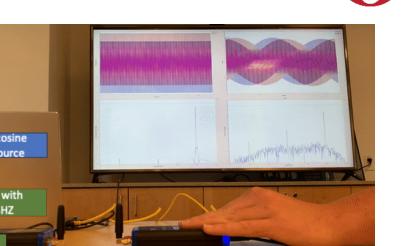
Azimuth and Elevation of MTI over Boulder

Signal Conditioning & Processing

FR 1.0The ground station shall be capable of receiving signals from a Low Earth Orbit
satellite between 2.2 - 2.3 GHz, in Quadrature Phase Shift Keying (QPSK) modulation
with a Bit Error Rate (BER) of 10⁻⁵, a bit rate of 2 Mbit/s, and a G/T of 3 dB/K.

ObjectiveLocationTest Design	 Ensure SDR's are correctly Discovery Learnin Transmit tone at 2 2.4 GHz carrier fre through Adalm Phantenna Receive tone thro Adalm Phuto with antenna 	g Center MHz with quency ito with dipole ugh second	GPS (Gencentian UU 223-54) 1070	Pluto Software Software Use	
Input Needed	Requirement	Expected		Verification	
None	DR 1.10 Receive 2MHz transmitting Pl			Power level drop with increased range	

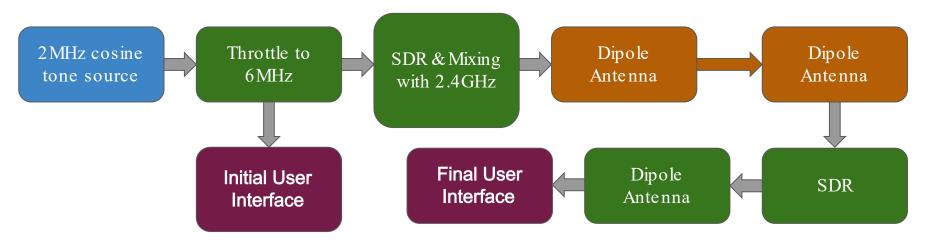
Level 1-SDR & Free Space Loss Verification

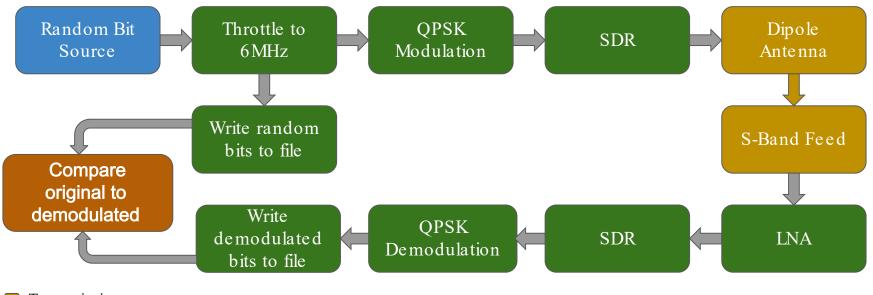


Objective	• Ensure SDRs can interact with RF signals	
Location	• Discovery Learning Center	
Test Design	 Transmit tone at 2MHz with 2.4GHz carrier frequency through Adalm Pluto dipole antenna Receive tone through other Adalm Pluto dipole antenna 	USER INTERFACE

2MHz cosine tone source Mixed with 2.4GHZ SDR Dipole Antenna

Result: Power level drops as expected.


Data Needed	Requirement	Expected	Verification
None	DR 1.10	Receive 2MHz tone from transmitting pluto	Power level drop with increased range


SDR & Free Space Loss Test Design

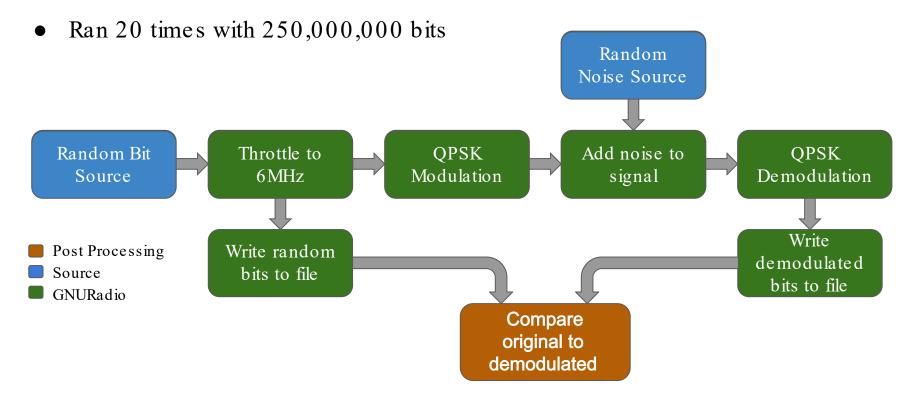
- **Transmission**
- Source
- GNURadio
- User Interface

Feed Rx Test Design

- **Transmission**
- Post Processing
- Source
- GNURadio

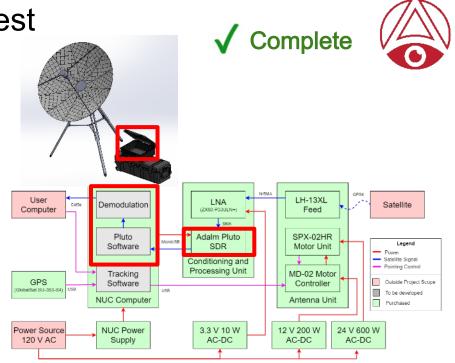
Level 1- Bit Error Rate Verification

Objective	 Ensure system will be able to receive accurate data from a satellite Ensure software is receiving data and modulate the data
Location	• Senior projects room
Test Design	 Create random 5·10⁹ bits Modulate, add noise, demodulate Compare to original signal



- Total System SNR: 17.21
 From ASEN 3300 link budget
- **Result**: Sample BER=0
 - With 99% confidence our BER meets requirement at current system SNR

Data Needed	Requirement	Expected	Verification	Risk
System SNR Bit Error Rate	DR 1.2	BER=~10 ⁻⁹	BER<10 ⁻⁹	 Theoretical system SNR Reduces Risk By: Modulation Functionality and Receive capability



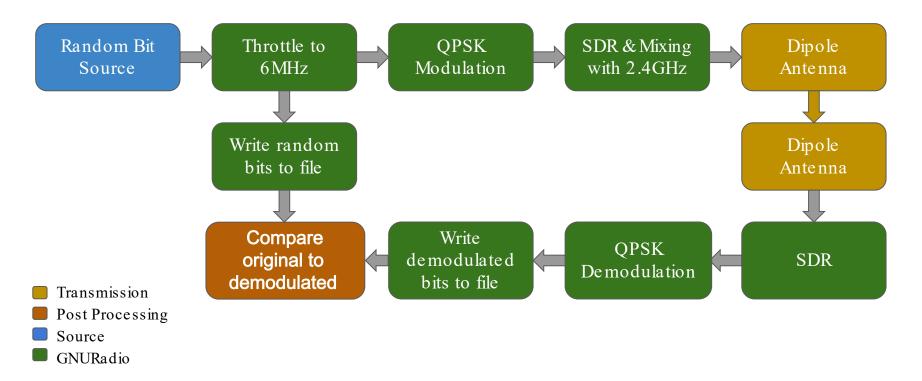
BER Test Design

Level 1- NUC Processing Speed Test

	_			
Objective	• Ensure NUC can handle 6MHz sampling frequency			
Location	• Clark conference room			
Test Design	•	6 MHz sampli 2.5 GHz carrie Adalm Pluto I Receive and other Adalm NUC Ensure that 2	Mbits, transmit at ng frequency with er frequency through Dipole Antenna demodulate through Pluto Antenna and 0 Mbits were sent in 10 seconds, and	User Computer Pluto Software GPS (debative in-323.84) UV Power Source 120 V AC NUC Comp NUC Pow Supply Result: NUC handl
Data Needed		Requirement	Expected	Verification
None		DR 1.4, 1.10	NUC can handle sampling frequency	Ensure bits are all present

Result: NUC handled signal well & demodulated correctly

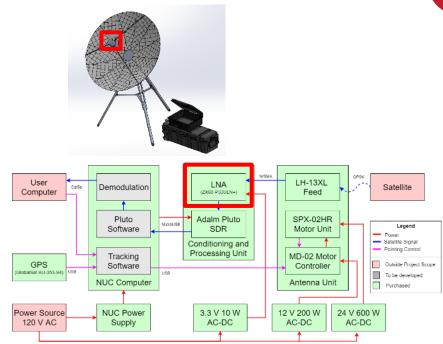
• Wifi interference


Modulation

Risk

58

NUC Processing Speed Test Design

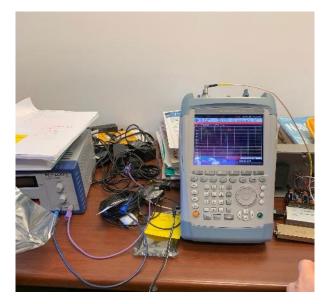


Level 1- Low Noise Amplifier Component Test

\prod	7
	0

Complete

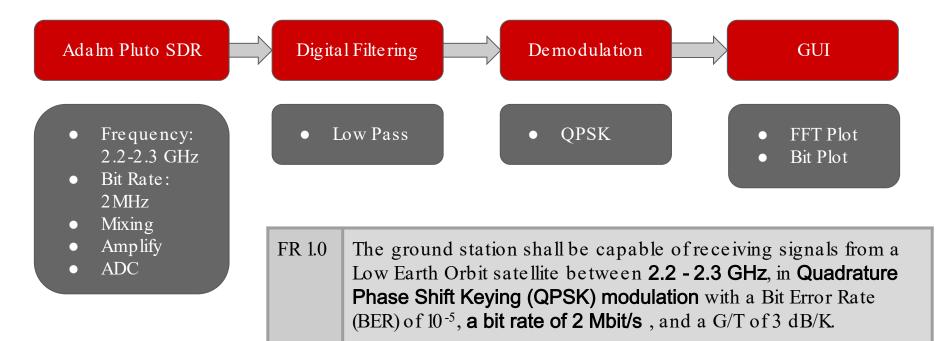
Objective	Determine LNA gain at target frequency
Location	Akos' Office
Equipment	Spectrum analyzer, 3.3V source, N- SMA adapters, attenuator
Test Design	LNA is powered, passed a signal via network analyzer, Rx gain measured


Data Needed	Requirement	Expected	Verification	Risk
LNA Gain	DR 1.9	10.7 dB gain at 2.3 GHz (Spec. sheet)	~10 dB gain increase on Rx when LNA is powered	ESD

Level 1- Low Noise Amplifier Component Test

61

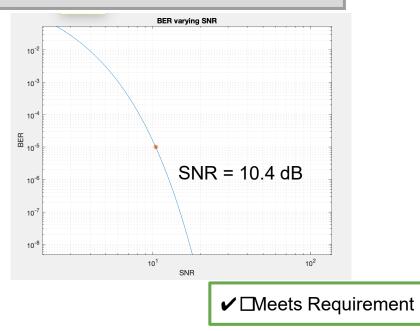
Objective	Determine LNA gain at target frequency
Location	Akos' Office
Equipment	Spectrum analyzer, 3.3V source, N- SMA adapters, attenuator
Test Design	LNA is powered, passed a signal via network analyzer, Rx gain measured



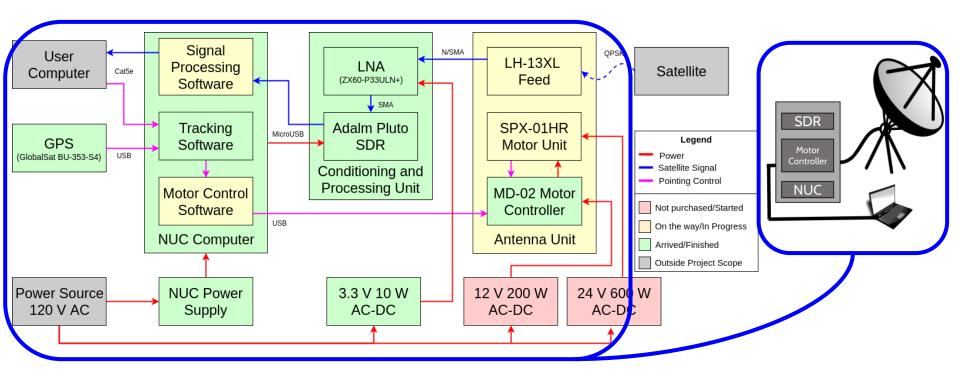
Result: 10 dB increase matches specifications.

Data Needed	Requirement	Expected	Verification	Risk
LNA Gain	DR 1.9	10.7 dB gain at 2.3 GHz (Spec. sheet)	~10 dB gain increase on Rx when LNA is powered	ESD

GNURadio Software Diagram


Bit Error Rate

FR 1.0 The ground station shall be capable of receiving signals from a Low Earth Orbit satellite between 2.2 - 2.3 GHz, in Quadrature Phase Shift Keying (QPSK) modulation with **a Bit Error Rate (BER) of 10⁵**, a bit rate of 2 Mbit/s, and a G/T of 3 dB/K.


BER is governed by the system Signal to Noise Ratio (SNR)

- Must have SNR ≥ 10.4dB to achieve BER of 10⁻⁵
- Current system $SNR \approx 17.2 \text{ ld B}$
 - BER \cong 8.9e-9
 - Determined using ASEN 3300 link budget and typical transmit values

Critical Manufacturing Area: Electrical

Manufacturing

Wiring Assembly

Radio Frequency Path Design

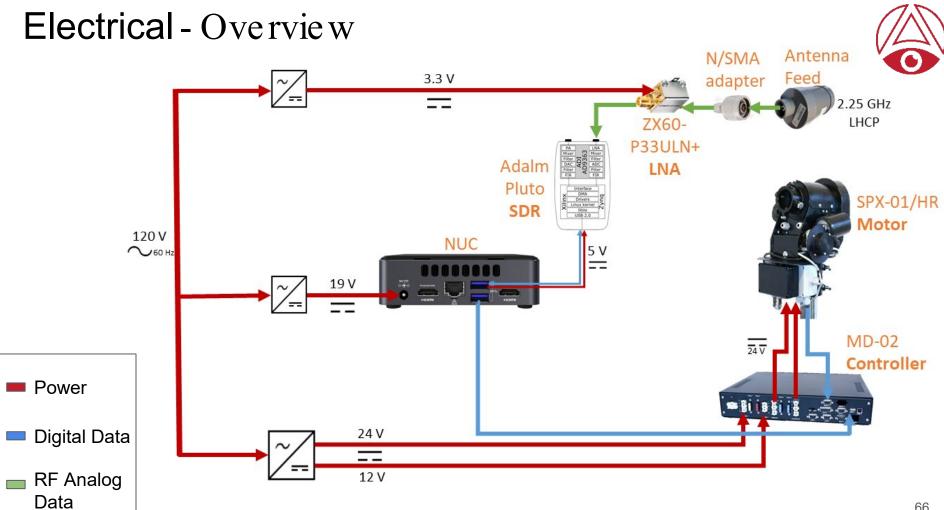
Power Supply

Critical Element

LNA 🗸

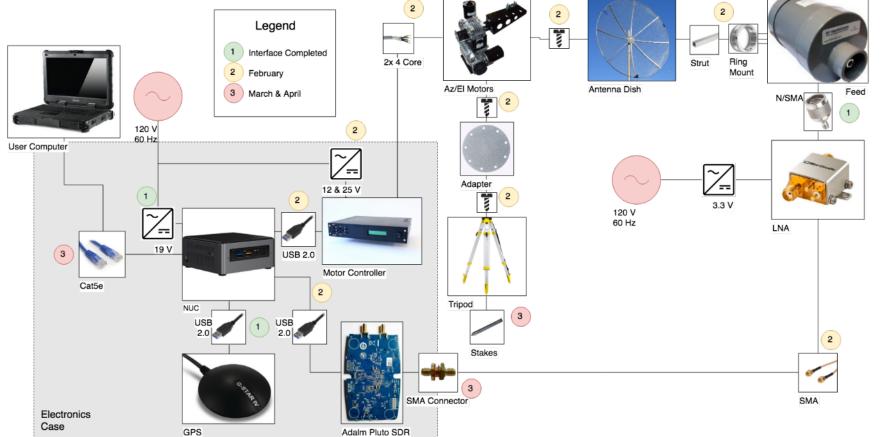
Motor Controller \checkmark

NUC 🗸


GPS 🗸

SDR 🗸

Power Converters


Feeds

System Integration Plan

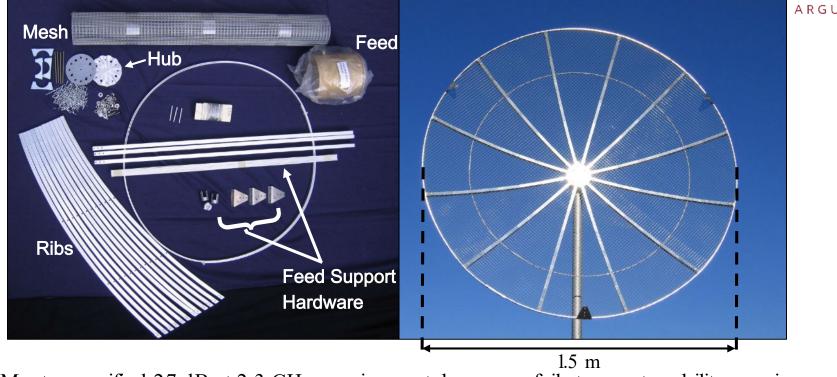
Functional Requirement 3

FR3.0	The ground station shall be reconfigurable to be used for different RF bands .

Reconfigurability Testing - April 14

Objective	• Ensure ground station can be reconfigured for other frequency bands	
Location	• Senior Projects Room	
Test Design	 Take out all components needed for reconfigurability Feed, SDR, LNA 	

Requirement	Expected	Verification	Risk
FR 3	Components can be removed easily and quickly	All can be removed within 30 minutes	Ring mount does not fit all feeds. Adjusting size and measuring medigates this



Antenna Subsystem

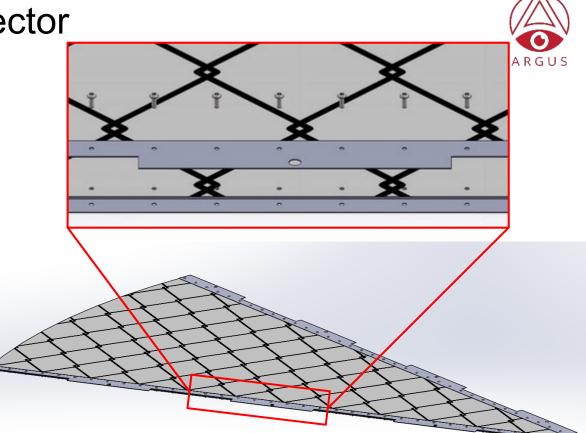
FR 1.0	The ground station shall be capable of receiving signals from a Low Earth Orbit satellite between 2.2 - 2.3 GHz, in Quadrature Phase Shift Keying (QPSK) modulation with a Bit Error Rate (BER) of 10 ⁻⁵ , a bit rate of 2 Mbit/s, and a G/T of 3 dB/K.
FR 4.0	ARGUS shall weigh less than 46.3 kg (102 lbs) and be capable of being carried a distance of 100 meters by two people.

RF Ham Design Reflector

• Meets specified 27 dB at 2.3 GHz requirement; however, fails to meet mobility requirement

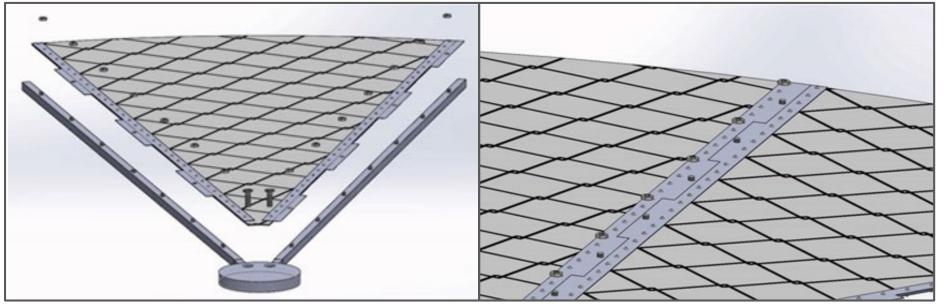
Modification of Reflector

Current RFHam dish:


- Assembly time 6+hours
- Single continuous mesh
- Multiple tools

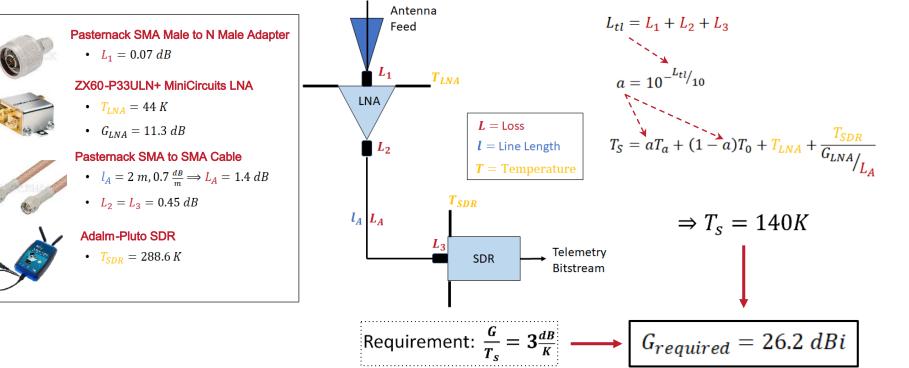
Modifications:

- Assembly time less than 1 hour
- Split into 12 connectable pieces
- Fewer than 4 tools

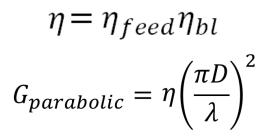

Modularity:

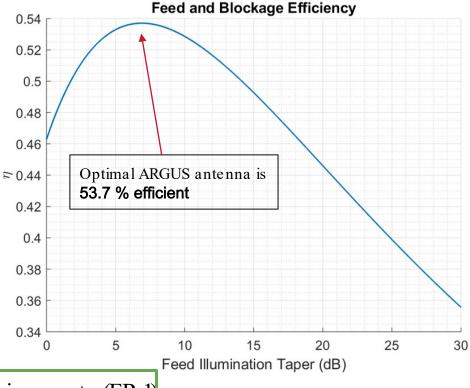
- 22 gauge aluminum sheet attaches to ribs
- Petals attach to central hub

Modification of Reflector

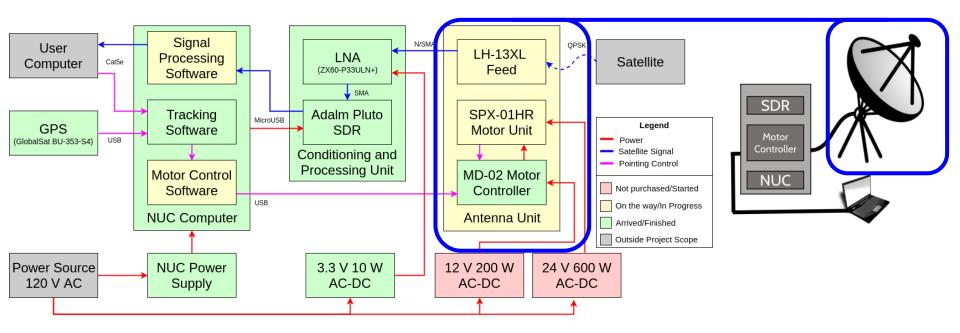


✓ ☐ Meets mobility requirements (FR.4)

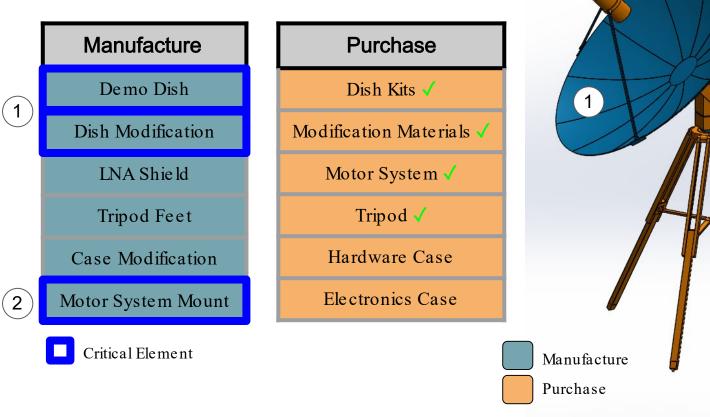

Antenna Gain Calculation



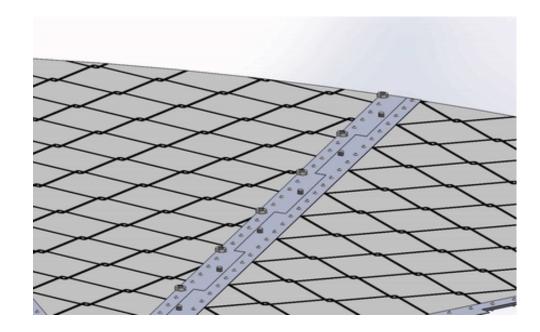
Estimated Efficiency


Gain at 53.7% efficiency	28.08 dBi
Gain at 35% efficiency	26.22 dBi
Required gain	26.2 dBi

✓ ☐ Meets bandwidth and gain requirements (FR.1)

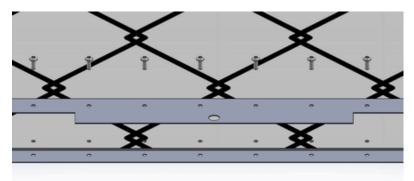


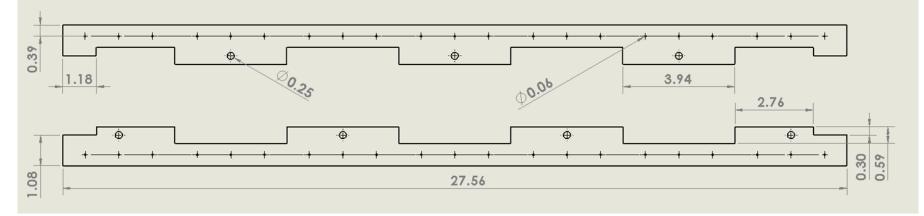
Critical Manufacturing Area: Mechanical


Mechanical - Components

Mechanical - Modified Dish

- Slow shipping of dish kit caused later start time
 - Work on off-days and weekends to offset slow start
- All additional components and tools purchased and prepared
- Challenges:
 - Splitting up outer ring for panels
 - Buckling of the mesh

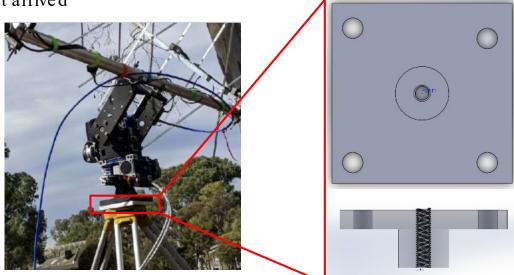




Mechanical - Modified Dish

• Still need to machine aluminum tabs

- Can be done in stacks in CNC machine
- Files are prepared
- Doing test print
- Modification to center hub



Mechanical - Tripod and Motor System Mount

- Changed selected tripod from CDR to accommodate uneven ground
- Need to create adapter plate to connect tripod to motors
 - Tripod and motor have not arrived
- Current plan:
 - Surveying tripod
 - Create adapter plate

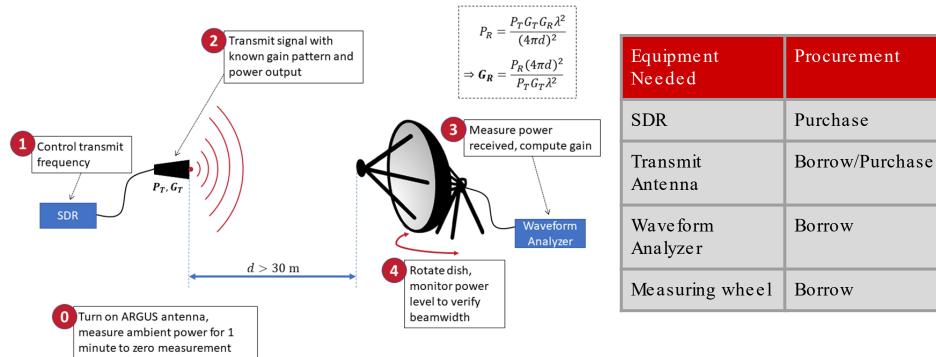
Functional Requirement 5

FR 5.0 The ground station onboard computer shall interface with a laptop using a Cat-5 ethernet cable.

Interfacing Verification

Objective	• Ensure software has full functionality over secure shell connection
Location	• Senior Projects Room
Test Design	• Complete unit testing of each software piece over secure shell connection

Result: All Tests pass and all pieces work over Cat-5 connection.


Data Needed	Requirement	Expected	Verification	Risk
None	FR 5	All Pass	Ensure all pass	Minimal

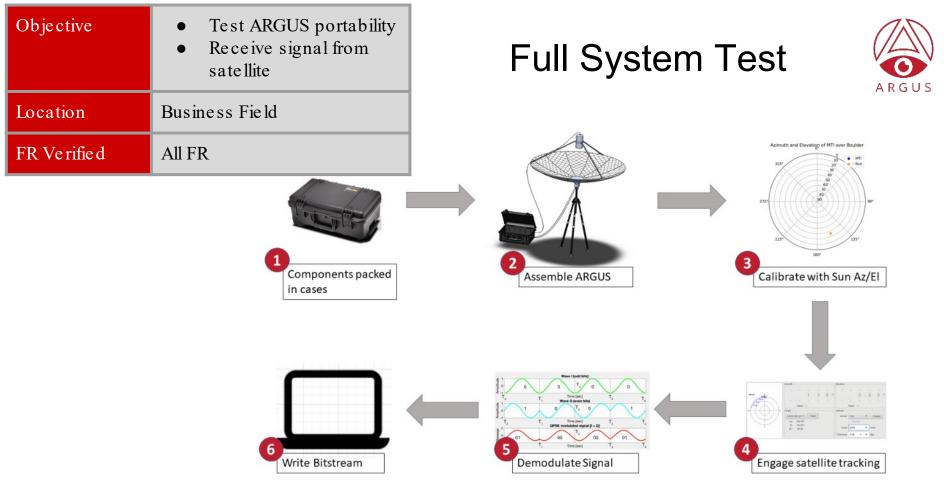
Verification and Validation

Antenna Gain/Beamwidth Test

Antenna Gain/Beamwidth Test

Objective	 Verify antenna gain Verify half power beam width (HPBW)
Location	Rural location or RF test range
FR Verified	FR 1: Gain, Beamwidth

Data Needed	Compared To	Expected
Gain	Efficiency model, dish kit specs	29.5dBi at 2.4GHz
Beamwidth	Idealized estimates, dish kit specs	6.5°



Potential Measurement Issues

- External signal noise
- Signal reflection from ground
- Incorrect feed placement
- Pointing accuracy

