# ARGOS Autonomous Rover for Ground-based Optical Surveillance

# Test Readiness Review March 4, 2021

Presenters: Niko de Boucaud, Victoria Gonzales, Luca Kushner, Dan Stojsavljevic,

**Jarrod Teige** 

**Customer: Barbara Streiffert and Jet Propulsion Laboratory** 

Advisor: Dr. Donna Gerren

Team: Niko de Boucaud, Henry Felstiner, Harrison Fitch, Victoria Gonzales, Nick Kuljis,

Luca Kushner, Margaux McFarland, Thomas Noll, Trevor Slack, Dan Stojsavljevic,

**Jarrod Teige** 

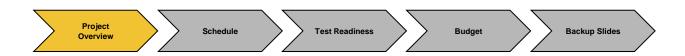


Jet Propulsion Laboratory
California Institute of Technology

# **Project Overview**

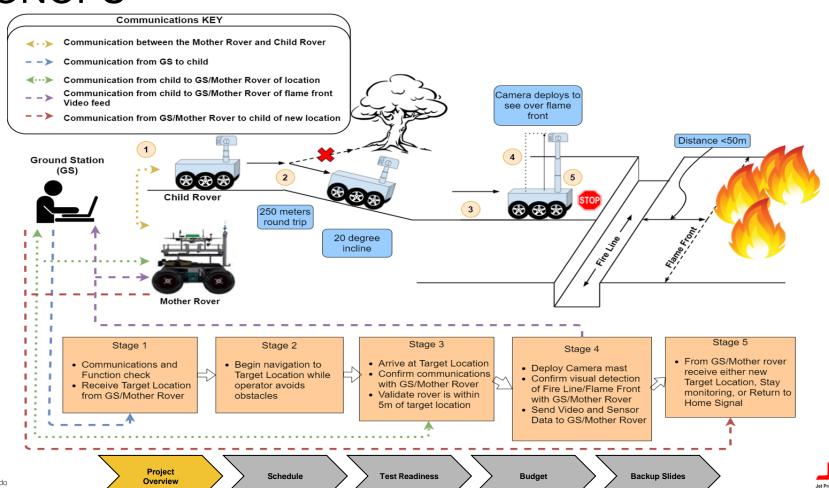






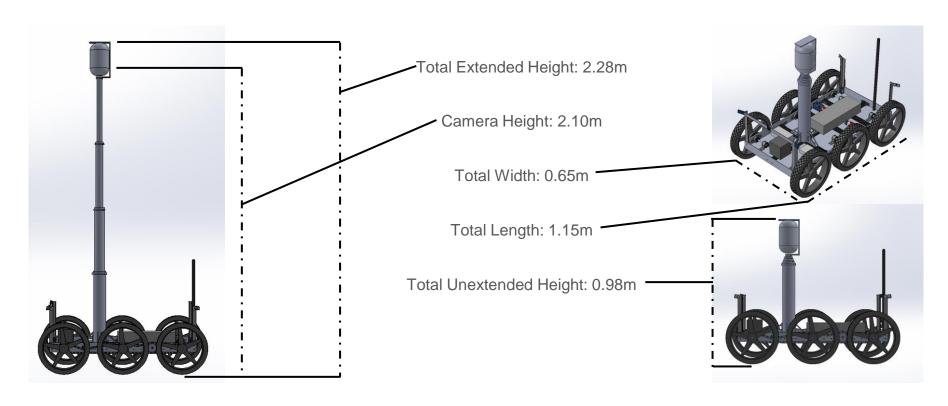

# Mission Statement / Objectives

The ARGOS team shall design, build, and test a child rover that will:

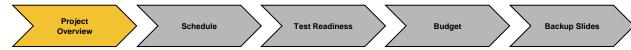

- 1. Navigate to a fireline via commands from a ground station (GS) and mother rover (MR)
- 2. Collect ambient temperature data throughout the duration of the mission
- 3. Record photos/video of a flame front from the top of an extendable/retractable mast
- 4. Communicate temperature data, photos, and video to the GS/MR





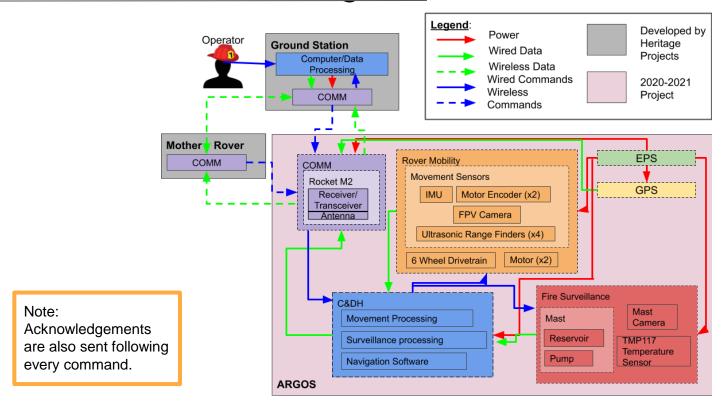



# **CONOPS**

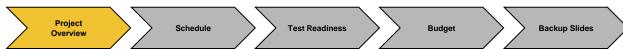



University of Colorado Boulder Jet Propulsion Laboratory
California Institute of Technolog

# Full Design Recap








# Functional Block Diagram







# Critical Project Elements (CPEs)

| CPE                                                | Description/Level of Success                                                                                                             | Reasoning                                                                                                  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Maneuverability                                    | <ul> <li>Traversing obstacles/inclines of 20° without tipping (level 2)</li> </ul>                                                       | <ul> <li>Failure results in tipping, damaged rover</li> <li>FR.1</li> </ul>                                |
| Control                                            | <ul> <li>Manual control (level 1)</li> <li>Mast control (level 3)</li> <li>Autonomous control in event of comm loss (level 4)</li> </ul> | <ul> <li>Failure results in possible crash, loss of rover</li> <li>FR.1</li> <li>FR.3</li> </ul>           |
| Sensors                                            | <ul> <li>Temperature (level 1)</li> <li>Video via mast (level 2)</li> <li>Movement sensors (level 3)</li> </ul>                          | <ul> <li>Failure results in no useful data</li> <li>FR. 2</li> </ul>                                       |
| Communications /Integration with Heritage Projects | <ul> <li>Transferring commands and data 250m away in an overstocked forest (level 4)</li> <li>MR, GS and ARGOS comm systems</li> </ul>   | <ul> <li>Failure results in not receiving any useful data, loss of rover</li> <li>FR.1 and FR.4</li> </ul> |







Schedule

Budget

# Updates since MSR

#### **Mechanical:**

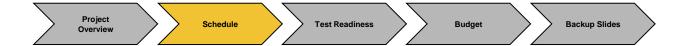
- 2-stage mast test successful
- Beginning assembly of drivetrain
- Only chassis
   housing and last 2
   mast stages left to
   manufacture

#### **Electrical:**

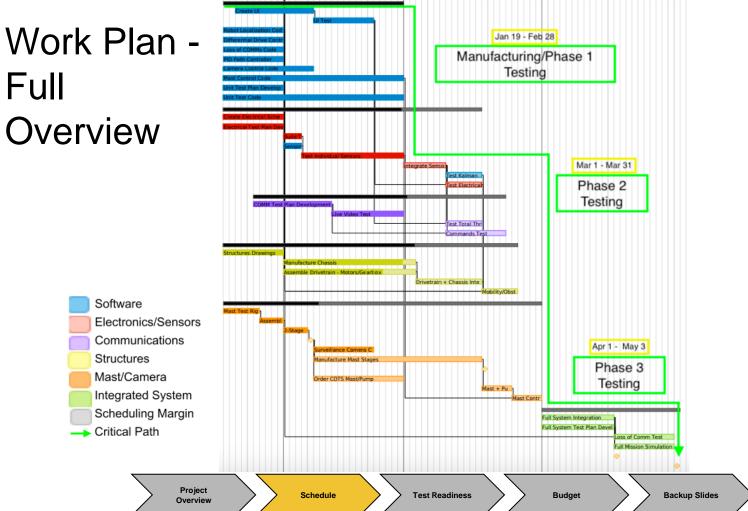
- All sensors arrived except IMU
- Individual sensor tests complete
- Video feed tested successfully

Test Readiness

#### Software:


- Camera control and loss of comms code complete
- Unit tests complete

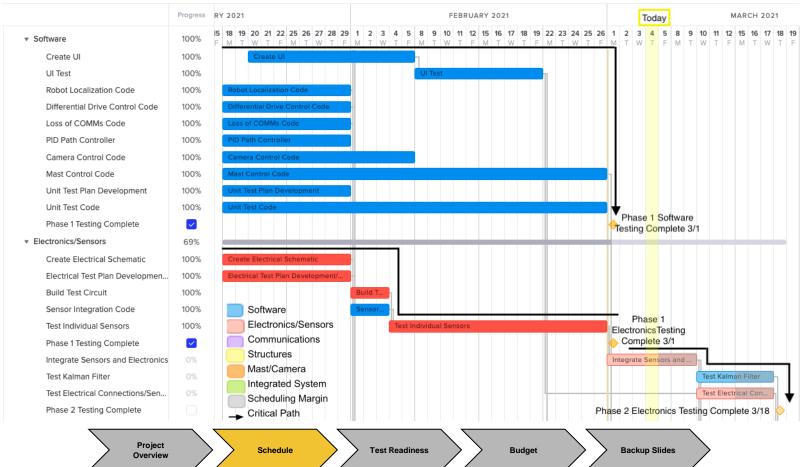





# Schedule



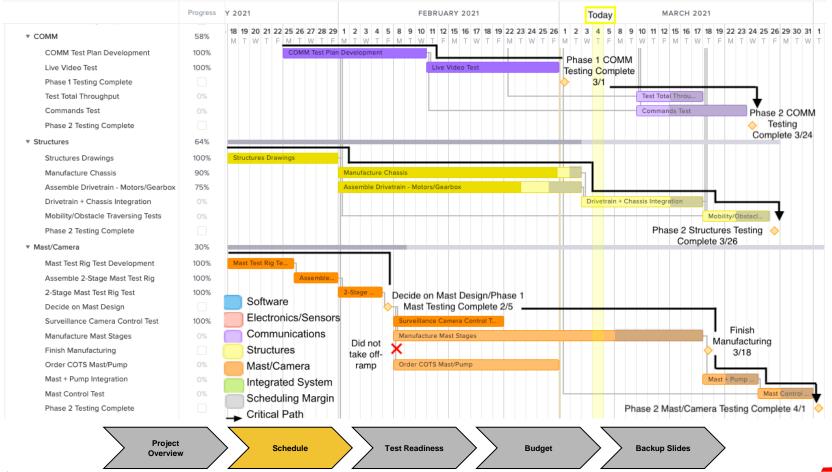








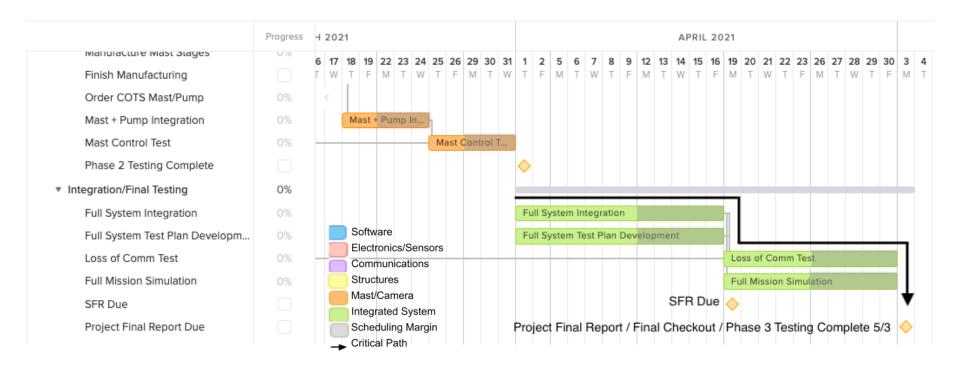

Jet Propulsion Laboratory
California Institute of Technolog


## Work Plan - Software and Electronics/Sensors

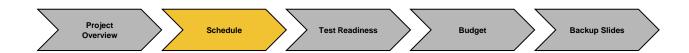




Jet Propulsion Laboratory
California Institute of Technology


# Work Plan - COMM, Structures, and Mast/Camera






Jet Propulsion Laboratory
California Institute of Technology

# Work Plan - Final Integration/Testing









# **Test Readiness**



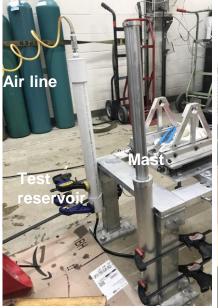




# **Overall Testing Status**



| Phase 1                                                                    | Phase 2                                                                         | Phase 3                               |  |  |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------|--|--|
| Component Testing                                                          | Subsystem Testing                                                               | Full System Testing                   |  |  |
| 2-stage mast test rig                                                      | <ul> <li>Drivetrain + motor + Differential</li> <li>Drive Controller</li> </ul> | Full mission simulation               |  |  |
| <ul> <li>Individual sensor accuracy and<br/>throughput</li> </ul>          | Surveillance Camera + Camera Controller                                         | <ul> <li>Loss of COMM test</li> </ul> |  |  |
| <ul><li>UI of ground station with sample data</li><li>Unit tests</li></ul> | <ul> <li>4-Stage Mast + Pump and<br/>Controller</li> </ul>                      |                                       |  |  |
| Live video                                                                 | <ul><li>Sensor output - Kalman Filter</li><li>UI of sensor data</li></ul>       |                                       |  |  |
|                                                                            | <ul><li>Sample commands</li><li>Full throughput test</li></ul>                  |                                       |  |  |








# Phase 1: 2-Stage Mast Test Rig

- Purpose: Finalize mast design
- Rationale: FR.3, SURV.3.1, SURV.3.2
- Test Facility: Aerospace Building
- Test Procedure:
  - Fill mast and reservoir with hydraulic fluid
  - Connect air line and pressurize
  - Observe extension, record pressure and mass
  - Depressurize and check for damages or leaks
  - Repeated until 13 trials were completed
- Completion Date: 2/4/21
- Results: Moving forward with manufactured hydraulic mast with addition of spring system to assist with mast compression











## Phase 1: Software Unit Tests

Purpose: Validate Code in Typical and Atypical Operation

• Rationale: FR.2, FR.4

• Test Facility: ROS/Gazebo Simulation

• **Necessary Equipment:** Linux Computer with 3 threads

• Test procedure:

Glass Box

Handling of normal, abnormal, and invalid data

Catch any edge cases

Black Box

GUI tests on inexperienced users

Completion Date: 2/26/21

Results:

Code functions in normal, abnormal, invalid conditions

Use of ROS prevents nodes from receiving an unexpected data type

Complete list of unit tests results in backup slides



Comms: Connected. ping [s]:0.18

Temperature [k]: 500.0

Tilt X [deg]: -0.03

Tilt Y [deg]: -0.17

GUI Output with Abnormal Data





## Phase 1: Communications Tests

#### Purpose:

 Ensure ARGOS is capable of transmitting and receiving data at rates of 5.1 Mbps out to 250m away.

#### Rationale:

 FR. 4 The child rover shall receive commands from both the ground station and the mother rover and transmit captured data to the ground station and the mother rover.

#### Test Facility:

Open field and Forest

#### Necessary equipment:

 Two Rocket M2 radios, Tupavco panel antenna, omnidirectional antenna, and GS laptop.

#### Test Procedure:

 Measure signal strength, data rates, and latency by walk one radio out by 20m. increments out to 250m.

Completion Date: 02/25/2021

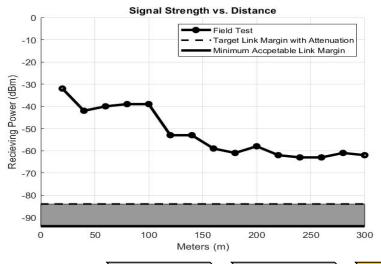
#### Ground station at 300 meters away



Tree Separation

**Ground station** 



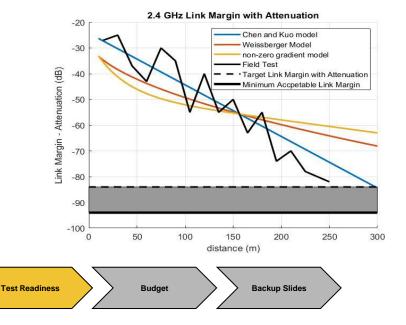



## Phase 1: Communications Results

Schedule

Goal: Achieve live video/ data rates necessary to handle rest of sensors and still fall within 10 dBm of receiver's sensitivity of -94 dBm

Open field test: Pass
23 dBm left of 57 dBm link budget @ 300m
Bandwidth of 41 Mbps @ 300m



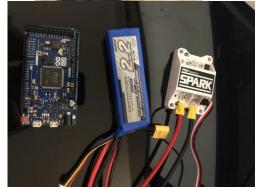

Project

Overview

Goal: Validate attenuation models by overlaying physical data we acquired from the forest.

Attenuation Test: Pass
2 dBm left of 57 dBm link Margin @ 250m
Bandwidth of 27 Mbps @ 250m








# Phase 2: Motor Controller and Drivetrain Integration

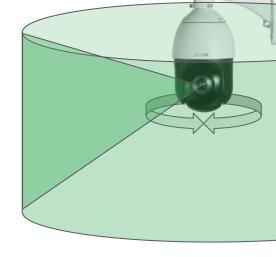
- Purpose: Assemble and integrate drivetrain system and motor controllers/ software.
- Rationale: FR.1
- Test Facility: Aerospace Building
- **Necessary Equipment:** Drivetrain components, motor controllers, arduino, laptop with software.
- Test procedure:
  - Assemble drivetrain subsystem
  - Send basic movement commands
  - Record results and make necessary adjustments.
- Testing Dates: 2/15/21 3/18/21
- Progress:
  - Sprockets have been successfully fit to gearbox and shafts
  - Full forward reverse and proportional control has been successfully achieved

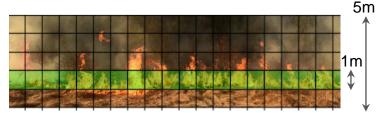


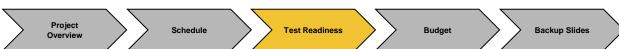







Phase 2 : Surveillance Camera and Controller


 Purpose: Validate surveillance camera remote operation programming with physical camera test


• Rationale: FR.3

Test Facility: Aerospace Building/Open Field

- Necessary Equipment: Surveillance camera and ground station
   Laptop with VMS software
- Test procedure:
  - Connect camera to ground station
  - Pan/Tilt/Zoom test
  - Validate at 132m a 1m tall object occupies 20% vertical image
- Testing Dates: 3/01/21

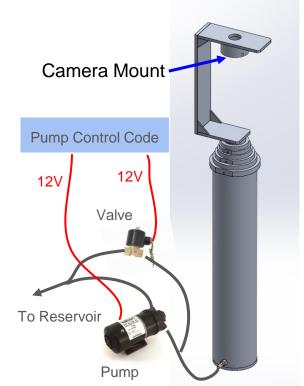


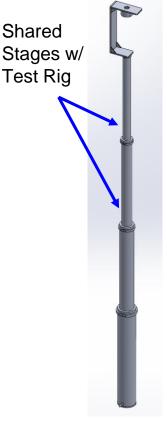




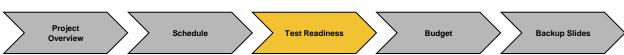


Phase 2: 4-Stage Mast and Pump


• Purpose: Test of finalized mast


Rationale: FR.3, SURV.3.1, SURV.3.2

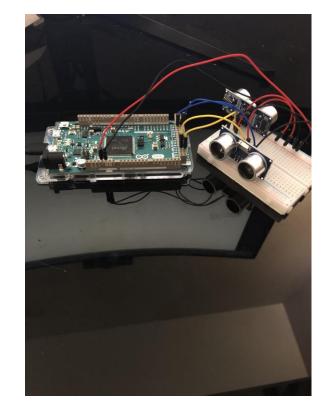
Test Facility: Aerospace Building


 Necessary Equipment: Mast assembly and hydraulic network, pump controller

- Test procedure:
  - Test pump/valve control
  - Fill hydraulic network with oil
  - Pressurize mast, observe extension, depressurize, record results
  - Repeat with camera mass and cables
- Testing Date: 3/18/21 3/31/21









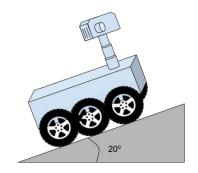



# Phase 2 : Sensor Output Test

- Purpose: Validate precision and throughput of sensor/arduino system
- Rationale: FR. 2
- **Test Facility:** At home and aerospace building/pilot lab
- Necessary Equipment: Sensors, arduino, computer and code
- Test procedure:
  - Individual: confirm accurate readings by comparing to known or target values
  - Combined: confirm data is received from each within specified time limits
- Testing Date: 2/10/21 3/18/21










# Phase 2 : Sensor Output Test - Kalman Filter

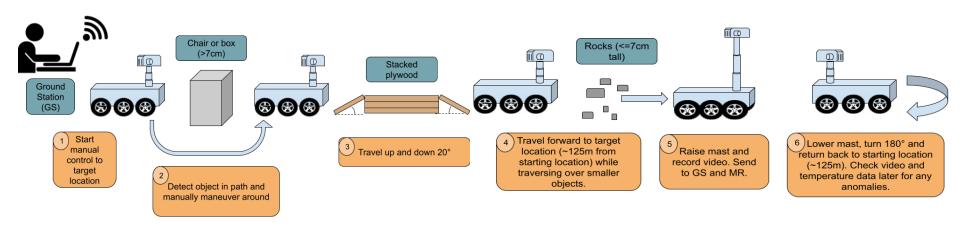
- Purpose: Validate accuracy of Kalman Filters
- Rationale: FR. 1
- Test Facility: Outside Aerospace building
- Necessary Equipment: ARGOS with sensors, motors, computer, and software. Measuring tape and protractor.
- Test procedure:
  - Move rover known distance, verify filter reports location to within +/- 5m
  - Tilt ARGOS 20° in both axes, verify filter reports angle to within +/- 1°
- **Testing Date:** 3/10-3/18







### Phase 3: Full Mission Simulation


Purpose: to test how ARGOS performs during a simulated mission

Schedule

- Rationale: to prove satisfaction all requirements
- Test Facility: outside/open field (Business Field)
- Estimated Completion Date: 4/30/21

Project

Overview







Budget

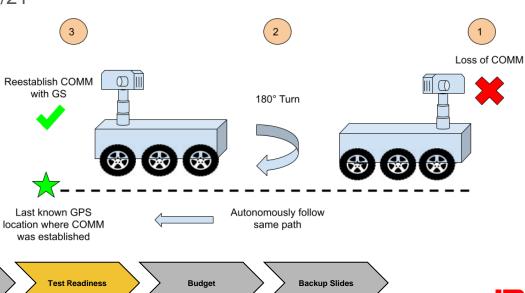
Backup Slides

## Phase 3: Loss of COMM Test

**Purpose:** to validate whether ARGOS returns to the last known GPS coordinate upon loss of communications

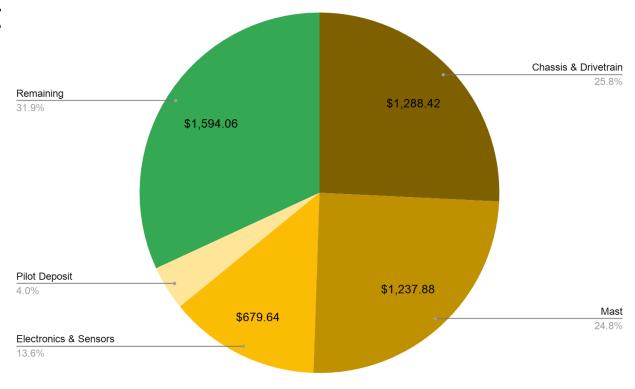
Rationale: COM.4.1

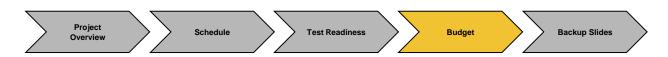
**Test Facility:** outside


Estimated Completion Date: 4/30/21

Two different ways to cut off signal:

Project


Overview


- Software
- Physical block (under engineering center)



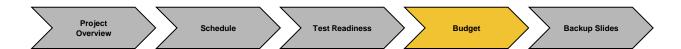


# **Budget**








# Budget

- Major Procurements
  - All major components have been purchased
- Remaining purchases
  - Miscellaneous items
    - wiring, replacements, etc
- Ongoing Order
  - Mast tubing needs to be repurchased
    - Totaling \$99.50
  - Aluminum Plate for Chassis
  - Wheels being delivered

Expenses: \$3,405.94

Remaining: \$1,594.06

**Estimated Final Cost: \$3,700** 

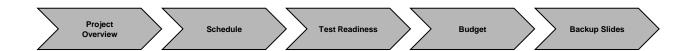




**Bill Of Materials** 

| Component                                                                                | Distributer | Quantity | Unit Price | Shipping | Total Price | Subsystem   |
|------------------------------------------------------------------------------------------|-------------|----------|------------|----------|-------------|-------------|
| GPS-RTK-SMA Breakout - ZED-F9P                                                           | Sparkfun    | 1        | 219.95     | 0        | 219.95      | Sensors     |
| RedLine Encoder Kit                                                                      | AndyMark    | 2        | 47         | 0        | 94          | Sensors     |
| Zio Ultrasonic Distance Sensor - HC-SR04 (Qwiic)                                         | Sparkfun    | 4        | 13.95      | 0        | 55.8        | Sensors     |
| SLAMTEC A2M8                                                                             | SAMTEC      | 1        | 319        |          | 319         | Sensors     |
| Runcam Nano 2 FPV Camera                                                                 | Flight Test | 1        | 19.99      |          | 19.99       | Sensors     |
| Infrared Thermometer - MLX90614                                                          | Sparkfun    | 1        | 29.95      | 0        | 29.95       | Sensors     |
| SparkFun VR IMU Breakout - BNO080 (Qwiic)                                                | Sparkfun    | 1        | 34.95      | 0        | 34.95       | Sensors     |
| Arduino Due                                                                              | amazon      | 1        | 39.9       | 0        | 39.9        | electronics |
| Intel NUc                                                                                | Intel       | 1        | 247        | 10       | 257         | electronics |
| Kingston A400 120G Internal SSD M.2                                                      | amazon      | 1        | 19.99      | 0        | 19.99       | electronics |
| GPS/GNSS Magnetic Mount Antenna                                                          | Sparkfun    | 1        | 12.95      | 0        | 12.95       | electronics |
| SPARK Brushed DC Motor Controller                                                        | AndyMark    | 2        | 50         | 10       | 110         | electronics |
| NETGEAR 5-Port Gigabit Ethernet Unmanaged Switch (GS305)                                 | amazon      | 1        | 15         | 0        | 15          | electronics |
| REDGO Video Audio VHS VCR USB Video Capture Card to DVD Converter Capture Card Adapter   | amazon      | 1        | 10.99      | 0        | 10.99       | electronics |
| SMAKN Waterproof DC/DC Converter 12V (10-30V) Step UP to 48V/4A 192W Power Supply Module | Amazon      | 1        | 29.99      |          | 29.99       | electronics |
| 12V 16Ah Deep Cycle LiFePO4 Battery                                                      | Amazon      | 1        | 49.99      |          | 49.99       | electronics |

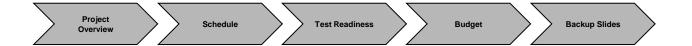
| Qwiic JST Connector - SMD 4-pin (Horizontal)   | spark fun                   | 4  | 0.5   | 0     | 2      | electronics          |
|------------------------------------------------|-----------------------------|----|-------|-------|--------|----------------------|
| 2-Bolt Flange Bearing                          | Grainger                    | 6  | 19.35 | 12.83 | 128.93 | Drivetrain           |
| Metal Gear                                     | McMaster                    | 0  | 60.4  |       | 0      | Drivetrain           |
| Standard Sprocket                              | Misuni                      | 10 | 8.19  | 13.4  | 95.3   | Drivetrain           |
| Radial Ball Bearing                            | Grainger                    | 12 | 3.91  | 0     | 46.92  |                      |
| Pillow Block Bearing                           | Grainger                    | 6  | 21    | 0     | 126    | Drivetrain           |
| Talon SRX Speed Controller                     | AndyMark                    | 2  | 99    | 0     | 198    | Drivetrain           |
| Ventilation Spacer                             | AndyMark                    | 2  | 5     | 0     | 10     | Drivetrain           |
| 1/2" Shaft                                     | McMaster                    | 6  | 8.71  |       | 52.26  | Drivetrain           |
| Chain                                          | McMaster                    | 10 | 5.49  |       | 54.9   | Drivetrain           |
| 775 Redline Motor                              | AndyMark                    | 2  | 19    | 8.5   | 46.5   | Drivetrain           |
| Swisher 13.75 in Rear Wheel                    | Lowe's                      | 6  | 24.1  | 0     | 144.6  | Drivetrain           |
| 57 Sport Gearbox                               | AndyMark                    | 2  | 96    | 0     | 192    | Drivetrain           |
| 6061 Aluminum Sheet 20x36.5                    | MidWest Steel<br>& Aluminum | 1  | 52.33 | 10.48 | 62.81  | Drivetrain - Chassis |
| Plexiglass Black Acrylic Plate 24inx36inx1/8in | Home Depot                  | 2  | 39.99 | 0     |        | Drivetrain - Chassis |


| Plexiglass Black Acrylic Plate 24inx36inx1/8in | Home Depot | 2 | 39.99  | 0 | 79.98  | Drivetrain - Chassis |
|------------------------------------------------|------------|---|--------|---|--------|----------------------|
| 1-3/4" Bore Wear Ring                          | McMaster   | 2 | 4.73   |   | 9.46   | Mast                 |
| 1/4 Machine Screws                             | McMaster   | 2 | 2.83   |   | 5 66   | Mast                 |
| 3/8 Machine Screws                             | McMaster   | 2 | 2.74   |   |        | Mast                 |
|                                                |            | 2 |        |   |        |                      |
| 2" OD 1.25" ID Aluminum Tube                   | McMaster   | 1 | 95.58  |   | 95.58  |                      |
| 2.25" OD 1.75" ID Aluminum Tube                | McMaster   | 1 | 78.26  |   | 78.26  | Mast                 |
| 1-3/4" Bore Dynamic Seal                       | McMaster   | 1 | 5.93   |   | 5.93   | Mast                 |
| O-ring 1.25" bore x100 for whatever reason     | McMaster   | 1 | 6.95   |   | 6.95   | Mast                 |
| Quick Disconnect Fitting                       | McMaster   | 1 | 11.3   |   | 11.3   | Mast                 |
| SUNBA 601-D25X                                 | Amazon     | 1 | 269.99 |   | 269.99 | Camera               |
| Rocket M2                                      | Amazon     | 2 | 80     |   | 160    | Communication        |

| POE TP-DCDC-1224 Adapter                                | PoETexas      | 2 | 5.49  | 10.98   | Communication |
|---------------------------------------------------------|---------------|---|-------|---------|---------------|
| TDEND at Devene CMA Female to N. Time Male              |               |   |       |         |               |
| TRENDnet Reverse SMA Female to N-Type Male              | Tuesdant      |   | 40    | 40      | 0             |
| Weatherproof Connector Cable (6.5ft, 2M), TEW-L202      | Trendnet      | 1 | 19    | 19      | Communication |
|                                                         |               |   |       |         |               |
| Antenna 2.4GHz 12dBi Omni-Directional WiFi w/ RP-TNC    | Data Alliance | 1 | 8.99  | 8.99    | Communication |
| 1ft Cat6 550 MHz UTP Snagless Ethernet Network Patch    |               |   |       |         |               |
| Cable, Blue                                             | Cable Leader  | 2 | 0.77  | 1.54    | Communication |
| Cable, blue                                             | Cable Leader  |   | 0.77  | 1.54    | Communication |
| 1 Foot Male to Male 2.1mm x 5.5mm Plug DC Power Adapter | Valley        |   |       |         |               |
| Cable 18GA                                              | Enterprises   | 1 | 3.99  | 3.99    | Communication |
|                                                         |               |   |       |         |               |
| Tupavco tp511 Panel Antenna 2.4 GHz 20 dBi directional  |               |   |       |         |               |
| antenna                                                 | Tupavco       | 1 | 54.98 | 54.98   | Communication |
|                                                         |               |   |       |         |               |
| TP-Link 5 Port Fast Ethernet 10/100Mbps PoE Switch      | Amazon        | 1 | 34.99 | 34.99   | Communication |
|                                                         |               |   |       |         |               |
| USB 2.0 Audio/Video Converter                           | Amazon        | 1 | 11.99 | 11.99   | Communication |
|                                                         |               |   |       |         |               |
| Total                                                   |               |   |       | 3354.72 |               |

# Summary

- Phase 1 Testing = complete
- Phase 2 Testing = in progress
- Some minor manufacturing delays, but do not affect schedule







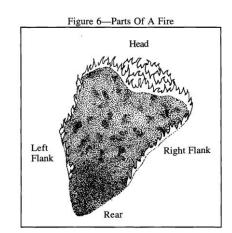

# Questions?

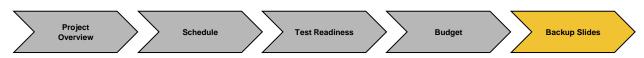






# **Backup Slides**

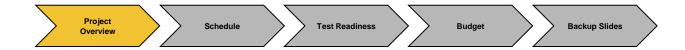





# **Definitions**

- **Fireline**: a trench cleared of any flammable material, dug at the edge of a forest or brush fire to halt the spread
- Flame Front: the leading edge of the forest fire perimeter
- **Survey**: to record video/take photos
- **Fire Surveillance**: a subsystem of ARGOS consisting of the sensors and components needed to survey the fire line
- <u>Tipping Condition</u>: condition when rover tips too far to the side or in the front or back and falls over
- Obstacles: rocks, tree stumps, fallen branches, or other debris found on the forest floor which can have heights up to 7cm
- <u>Tree density</u>: measure of how many trees will be in an area (# trees/acres)
- <u>Terrain</u>: specification of the forest floor which ARGOS must traverse (detailed definition in backup slides)

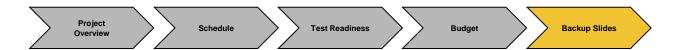





# **Functional Requirements**

| Requirement ID | Requirement Description                                                                                                                                              |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| FR.1           | The child rover shall move from a starting location to a commanded location of interest and return back to the starting location.                                    |  |
| FR.2           | The child rover shall take pictures, videos and ambient temperature data to be sent to the ground station.                                                           |  |
| FR.3           | The child rover shall use a mast to take photos and video from a vantage point above the rover's body.                                                               |  |
| FR.4           | The child rover shall receive commands from both the ground station and the mother rover and transmit captured data back to the ground station and the mother rover. |  |

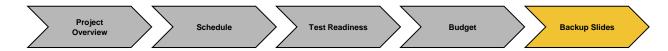







FR. 1 The child rover shall move from a starting location to a commanded location of interest and return back to the starting location.

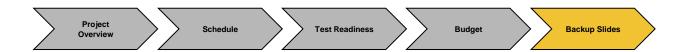
| Design<br>Requirement<br>ID | Description                                                                                                                                              |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| MOV.1.1                     | The child rover shall be able to perform a 360 degree turn.                                                                                              |  |
| MOV.1.2                     | The child rover shall be able to travel in forward and reverse motion.                                                                                   |  |
| MOV.1.3                     | The child rover shall be able to travel up and down slopes of 20 degree inclination.                                                                     |  |
| MOV.1.4                     | The child rover shall be able to travel over obstacles with heights as tall as 7cm.                                                                      |  |
| MOV.1.5                     | The child rover shall be able to travel 250m round trip in any direction from its starting location.                                                     |  |
| CDH.1.1                     | The child rover shall be able to detect when a tipping condition is met(when the rover falls over) and send an alert to the ground station/mother rover. |  |








FR. 2 The child rover shall take pictures, videos and ambient temperature data to be sent to the ground station.


| Design         |                                                                                                                   |  |
|----------------|-------------------------------------------------------------------------------------------------------------------|--|
| Requirement ID | Description                                                                                                       |  |
| SURV.2.1       | The camera shall have >100 degrees field of view.                                                                 |  |
| SURV.2.2       | The camera shall provide operator with pictures and video of fire that occupy at least 20% of the vertical image. |  |
| CDH.2.3        | The child rover shall be able to determine the ambient temperature within +/-1 °K at the location of interest.    |  |

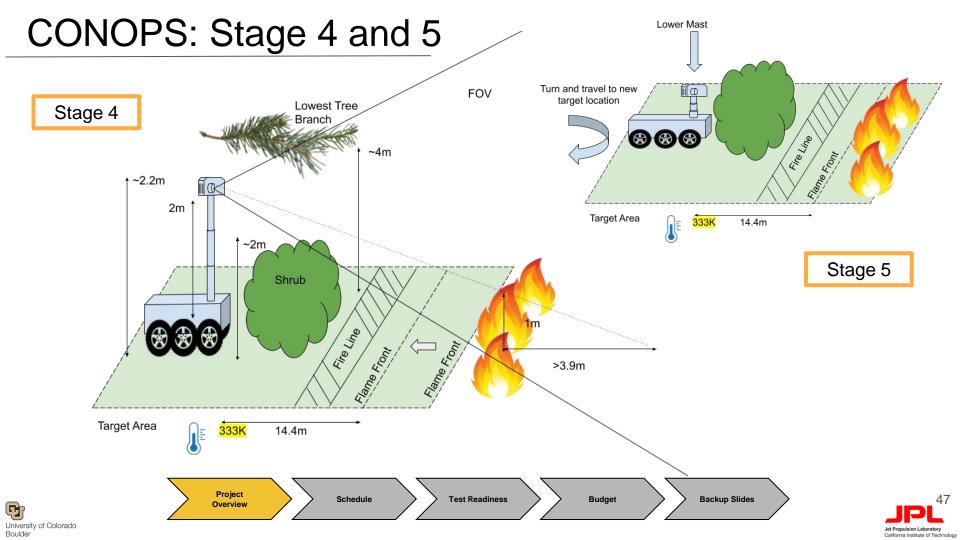




FR. 3 The child rover shall use a mast to take photos and video from a vantage point above the rover's body.

| Design<br>Requirement<br>ID | Description                                                                                                               |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| SURV.3.1                    | The child rover shall have a mast capable of extending to a height of 2m and retracting back down to its original height. |  |
| SURV.3.2                    | The child rover shall have a mast capable of supporting 10kg of weight on the top.                                        |  |






FR. 4 The child rover shall receive commands from both the ground station and the mother rover and transmit captured data to the ground station and the mother rover.

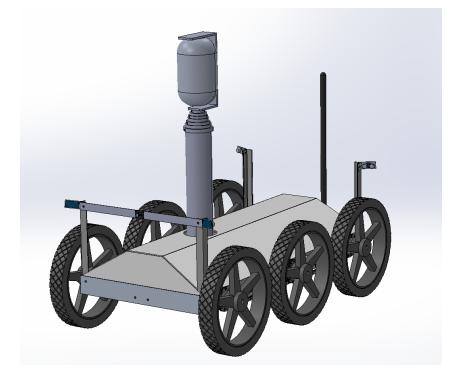
| Design<br>Requirement<br>ID | Description                                                                                                                                 |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| COM.4.1                     | Upon loss of communication, the child rover shall return to its last known GPS location (storage of waypoints).                             |  |
| COM.4.2                     | The child rover shall send time stamped video, image, and temperature data to the ground station and mother rover at a data rate up 25Mbps. |  |
| COM.4.3                     | The ground station shall confirm if the child is within +/- 5m of the desired location.                                                     |  |
| COM.4.4                     | The child rover shall send its location every 1.5s to the ground station/mother rover.                                                      |  |
| COM.4.5                     | The mother rover/ground station shall be able to command the child rover to navigate to specified GPS coordinates in real time .            |  |
| COM.4.6                     | The mother rover/ground station shall be able to command video feed on/off.                                                                 |  |
| COM.4.7                     | The mother rover shall be able to receive commands from the ground station at a data rate up 25Mbps.                                        |  |
| COM.4.8                     | The mother rover shall be able to send temperature data and video to the ground station and vice versa.                                     |  |



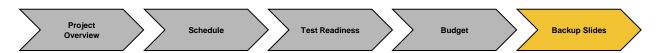




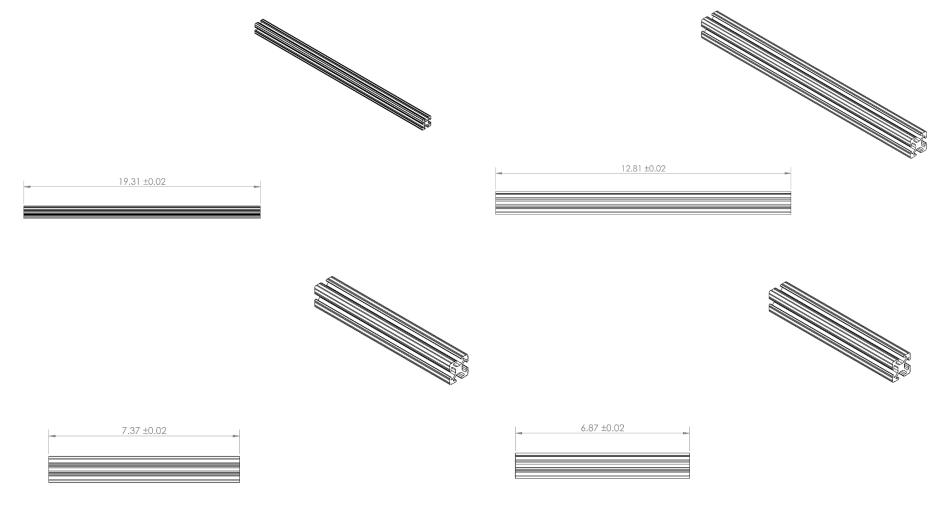
### Levels of Success

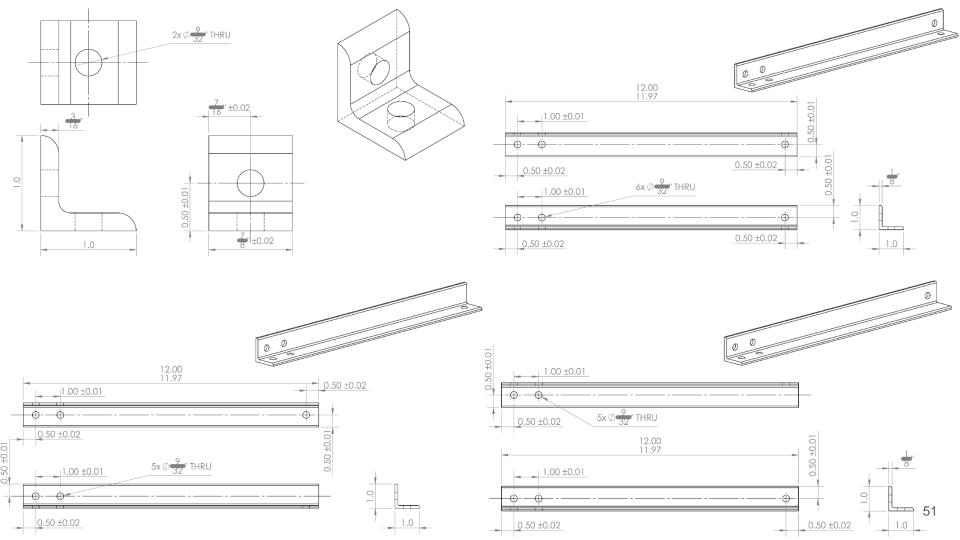

|         | Rover Movements and Control                                                                                                                                                                                                                                                             | Surveillance                                                               | Communications                                                                                                                                                                                                                                                              |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Level 1 | Rover can travel on flat ground for 100m via manual control. Rover can travel in the forward direction and can turn 360 degrees with a turn radius less than two rover body lengths (2.3m).                                                                                             | throughout the mission. Rover records                                      | Rover can receive GPS commands from the ground station and the mother rover. Rover can transmit temperature data and video/images to the ground station and mother rover at 1 Hz Om from ground station in an open area (tree density of 0 trees/acre) or in the same room. |
| Level 2 | Rover can travel on various terrains, including leaves, underbrush, dirt and mud while staying upright. Rover can travel on a 20 degree incline. Rover can turn 360 degrees with a turn radius less than one rover body length (1.15m).                                                 | Rover records timestamped video of the flame front via a camera on a mast. | Rover can communicate with the ground station and the mother rover up to 100 m in an understocked forest (tree density of 100 trees/acre).                                                                                                                                  |
| Level 3 | Rover can turn 360 degrees on the spot. Rover can autonomously return to the last known GPS coordinate if communications are lost. Rover can detect large obstacles, such as trees and dense bushes, in its path. Rover can detect a tipping condition by measuring its angular motion. | Rover's mast is extendable and retractable.                                | Rover can communicate with the ground station and the mother rover up to 250 m and in a fully stocked forest (tree density of 170 trees/acre).                                                                                                                              |
| Level 4 | Rover can detect small obstacles, such as rocks and small bushes, and navigate a path around them. Rover navigate to a GPS waypoint within +/-5m of the desired coordinate.                                                                                                             | N/A                                                                        | Rover can communicate with the ground station and the mother rover in an overstocked forest (tree density of 200 trees/acre).                                                                                                                                               |

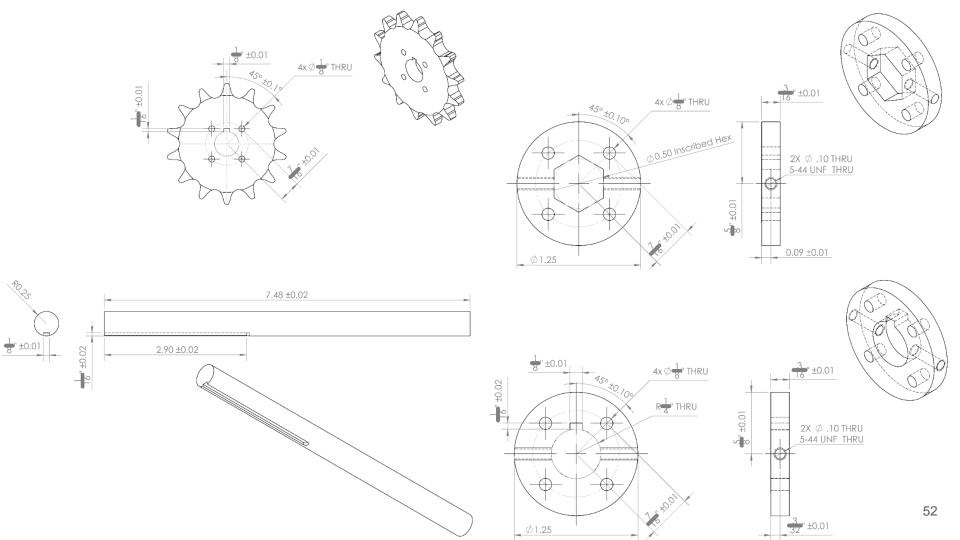





# Final Design With Top Panels


- Panels made of acrylic
- Connected using angled aluminum brackets














## Phase 2: Drivetrain Maneuverability Test

- Purpose: Determine if rover is capable of maneuvering over 7 cm obstacles and slopes of up to 20 degrees
- Rationale: FR.1
- Test Facility: Aerospace Building
- Necessary Equipment: Integrated drivetrain components, wooden blocks of heights up to 7 cm, ramp of incline up to 20 degrees
- Test procedure:
  - Drive rover over standard obstacles of increasing height up to 7 cm. Record performance and data from controllers.
  - Drive rover up slopes of increasing gradient up to 20 degrees. Record performance and data from controllers
- Testing Dates: 3/18/21 3/25/21







# Mechanical Testing - Drivetrain Initial Fitting Test

- Purpose: Assess how completed drivetrain components fit together including gear box, sprockets, spacers, chains, and shafts
- Rationale: FR.1
- Test Facility: Aerospace Building
- Necessary Equipment: Completed machined drivetrain components, screws, and nuts
- Test procedure: Completion Date: 2/22/21
- Results: Spacers for sprockets were not large enough to fit chains and need to be remachined. Everything else was successful.

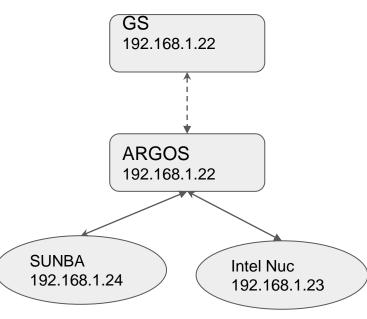


# Communications

#### Update:

Comm parts are being shipped

#### Tasks:


Establish comm link between radios

Project

Overview

 Analyze bandwidth, latency, and power received up to 250m.





Ethernet: Wireless:

**Backup Slides** 

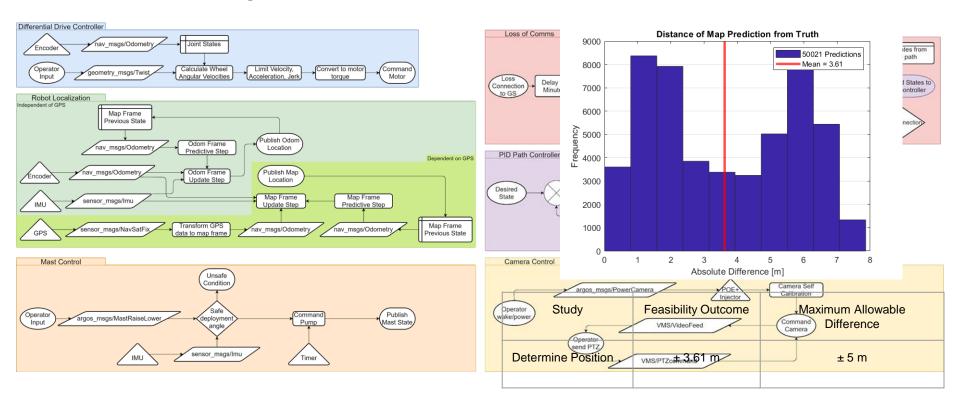




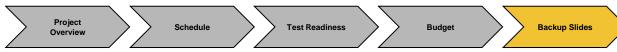
### Software Unit Tests: Glass

| GUI      | Valid<br>Data | Unexpected<br>Data      | Nan/None                        | No Active Rostopic             |
|----------|---------------|-------------------------|---------------------------------|--------------------------------|
| Comms    | Yes           | Yes: alerts in dialogue | Yes: displays none              | Yes: different display message |
| Temp     | Yes           | Yes: alerts in dialogue | Yes                             | Yes: different display         |
| Tilt     | Yes           | Yes: alerts in dialogue | Yes                             | Yes: different display         |
| URF      | Yes           | Yes: alerts             | Yes                             | Yes: disconnected displays     |
| ARM      | N/A           | N/A                     | N/A                             | Yes                            |
| Waypoint | Yes           | Yes                     | Yes: prevents waypoint addition | Yes                            |
| Location | Yes           | Yes                     | Yes                             | Yes: alerts in dialogue        |
| Mast     | N/A           | N/A                     | N/A                             | Yes                            |
| Camera   | N/A           | N/A                     | N/A                             | Yes                            |

| Comms Ping       | Passed                           |
|------------------|----------------------------------|
| No Data          | Yes: emits disconnect            |
| Data             | Yes: emits connect               |
| Nan Data         | Yes: emits warn signal           |
| Loss of<br>Comms | Passed                           |
| No Odom<br>Data  | Yes: non functional as expected  |
| Odom Data        | Yes                              |
| No Comms<br>ping | Yes: maneuvers                   |
| Comms Ping       | Yes: stores odom                 |
| Reconnect        | Yes: exit maneuver               |
| Localization     | Passed                           |
| No Data          | Yes: doesn't publish as expected |
| Data             | Yes                              |
| Partial Data     | Yes: publishes                   |

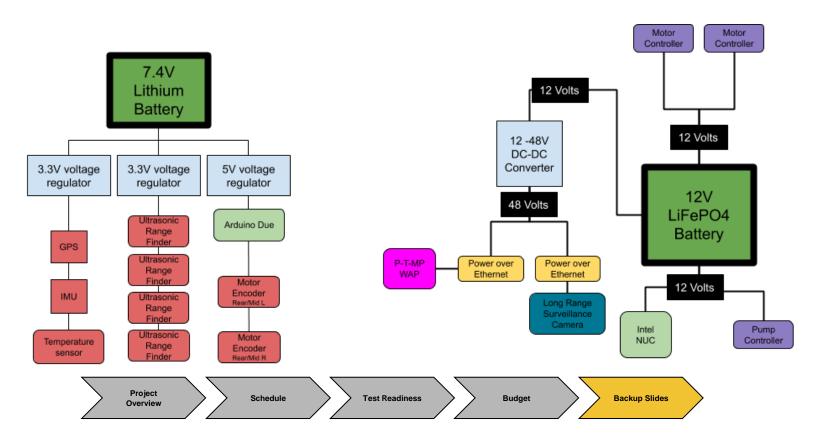

| Diff Drive            | Passed                                                                       |  |
|-----------------------|------------------------------------------------------------------------------|--|
| No Data               | Yes: doesn't move                                                            |  |
| Data                  | Yes                                                                          |  |
| Unexpected<br>Data    | Yes: capped linear and angular speeds                                        |  |
| Gamepad<br>Controller | Passed                                                                       |  |
| No Data               | Yes: doesn't publish                                                         |  |
| Data                  | Yes                                                                          |  |
| Unexpected<br>Data    | Yes: only intakes joystick, caps value with linear transform and conditional |  |
| Disconnect            | Yes: removes functionality                                                   |  |

#### Software Unit Tests: Black Box


- 3 Users Tested on UI
  - Briefed on displays
  - Users were not a part of the senior projects team
  - Did not allow for malicious users

| GUI      | Valid Data   | Unexpected Data           | No Data                         |
|----------|--------------|---------------------------|---------------------------------|
| Comms    | Yes          | Yes: viewed alert         | Yes: sees disconnect            |
| Temp     | Yes          | Yes: viewed alert         | Yes: sees disconnect            |
| Tilt     | Yes          | Yes: viewed alert         | Yes: sees disconnect            |
| URF      | Yes          | Yes: viewed alert         | Yes: sees disconnect            |
| ARM      | Yes: enabled | N/A                       | Yes: disabled                   |
| Waypoint | Yes          | Allows for Malicious user | Yes: prevents waypoint addition |
| Location | Yes          | N/A                       | Yes: viewed alert               |

# Software Diagram











# Power Diagram

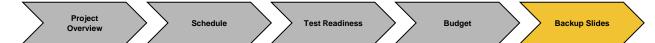


#### Other Manual Control Tests








# Subsystem Breakdown

#### Hydraulic Mast

| Subsystem      | Total      |
|----------------|------------|
| Sensors        | \$773.64   |
| Electronics    | \$547.81   |
| Drivetrain     | \$1,048.49 |
| Chassis        | \$142.79   |
| Camera         | \$269.99   |
| Test Rig       | \$218.62   |
| Hydraulic Mast | \$400.00   |
| Communications | \$306.46   |
|                |            |
| Total          | \$3,707.80 |
| Remaining      | \$1,292.20 |

#### Off-Ramp Mast

| Subsystem      | Total      |
|----------------|------------|
| Sensors        | \$773.64   |
| Electronics    | \$547.81   |
| Drivetrain     | \$1,048.49 |
| Chassis        | \$142.79   |
| Camera         | \$269.99   |
| Test Rig       | \$218.62   |
| Off Ramp Mast  | \$900.00   |
| Communications | \$306.46   |
|                |            |
| Total          | \$4,207.80 |
| Remaining      | \$792.20   |



### Forest Research: Trees

| Source : https://www.fs.fed.us/psw/publications/documents/cfres_series/cfres_itr_afswp416.pdf |                     |                       |                 |                |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|---------------------|-----------------------|-----------------|----------------|--|--|--|--|--|
| Tree Species                                                                                  | Average Height (ft) | Max Crown Length (ft) | Difference (ft) | Difference (m) |  |  |  |  |  |
| Ponderosa Pine                                                                                | 80                  | 48.4                  | 31.6            | 9.63168        |  |  |  |  |  |
| Sugar Pine                                                                                    | 175                 | 19.6                  | 155.4           | 47.36592       |  |  |  |  |  |
| Western White Pine                                                                            | 175                 | 48.95                 | 126.05          | 38.42004       |  |  |  |  |  |
| Lodgepole Pine                                                                                | 75                  | 45.6                  | 29.4            | 8.96112        |  |  |  |  |  |
| Loblolly Pine                                                                                 | 100                 | 21.3                  | 78.7            | 23.98776       |  |  |  |  |  |
| White fir                                                                                     | 50                  | 49.4                  | 0.6             | 0.18288        |  |  |  |  |  |
| Grand fir                                                                                     | 150                 | 61.95                 | 88.05           | 26.83764       |  |  |  |  |  |
| Douglas fir                                                                                   | 55                  | 42.5                  | 12.5            | 3.81           |  |  |  |  |  |
| Engelmann Spruce                                                                              | 87.5                | 47.7                  | 39.8            | 12.13104       |  |  |  |  |  |
| Western Hemlock                                                                               | 125                 | 39.45                 | 85.55           | 26.07564       |  |  |  |  |  |
| Incense Cedar                                                                                 | 126.5               | 27.6                  | 98.9            | 30.14472       |  |  |  |  |  |
| Western Redcedar                                                                              | 200                 | 31.9                  | 168.1           | 51.23688       |  |  |  |  |  |
| Western Larch                                                                                 | 140                 | 38.7                  | 101.3           | 30.87624       |  |  |  |  |  |
|                                                                                               | Average             |                       |                 |                |  |  |  |  |  |







### Forest Research : Shrubs/Bushes

|                      | Native Colorado Shrubs       |                     |                |               |                |             |
|----------------------|------------------------------|---------------------|----------------|---------------|----------------|-------------|
| Shrub Speciies       | Max Height (when mature, ft) | Max Height (meters) | Max Width (ft) | Max Width (m) | Min Width (ft) | Min Width ( |
| Red chokeberry       | 6                            | 1.8288              | 4              | 1.2192        | 2              | 0.6096      |
| Black chokeberry     | 5                            | 1.524               | 5              | 1.524         | 2              | 0.6096      |
| Japanese barberry    | 5                            | 1.524               | 5              | 1.524         | 2              | 0.6096      |
| Siberian peashrub    | 10                           | 3.048               | 6              | 1.8288        | 4              | 1.2192      |
| Peking or Hedge cot  | or 8                         | 2.4384              | 6              | 1.8288        | 4              | 1.2192      |
| Burning bush         | 6                            | 1.8288              | 6              | 1.8288        | 4              | 1.2192      |
| Forsythia            | 6                            | 1.8288              | 8              | 2.4384        | 6              | 1.8288      |
| Creeping juniper     | 2                            | 0.6096              | 6              | 1.8288        | 4              | 1.2192      |
| Savin juniper        | 4                            | 1.2192              | 6              | 1.8288        | 4              | 1.2192      |
| 'Cheyenne' Cheyenn   | e 6                          | 1.8288              | 6              | 1.8288        | 4              | 1.2192      |
| 'Cheyenne' Cheyenn   | e 6                          | 1.8288              | 5              | 1.524         | 4              | 1.2192      |
| Common ninebark      | 6                            | 1.8288              | 6              | 1.8288        | 4              | 1.2192      |
| Nanking cherry       | 8                            | 2.4384              | 8              | 2.4384        | 6              | 1.8288      |
| Purpleleaf sand che  | n 6                          | 1.8288              | 6              | 1.8288        | 4              | 1.2192      |
| Staghorn sumac       | 12                           | 3.6576              | 8              | 2.4384        | 6              | 1.8288      |
| Alpine currant       | 4                            | 1.2192              | 4              | 1.2192        | 3              | 0.9144      |
| Elderberry           | 8                            | 2.4384              | 8              | 2.4384        | 6              | 1.8288      |
| Ash-leaf spirea or U | ra 6                         | 1.8288              | 6              | 1.8288        | 4              | 1.2192      |
| Vanhoutte spirea     | 6                            | 1.8288              | 6              | 1.8288        | 4              | 1.2192      |
| Coralberry, buckbrus | h 5                          | 1.524               | 5              | 1.524         | 3              | 0.9144      |
| Common lilac         | 8                            | 2.4384              | 6              | 1.8288        | 4              | 1.2192      |
| Preston or Canadian  | li 8                         | 2.4384              | 6              | 1.8288        | 4              | 1.2192      |
| Wayfaringtree vibu   | nı 8                         | 2.4384              | 8              | 2.4384        | 6              | 1.8288      |
| Nannyberry viburnu   | n 10                         | 3.048               | 8              | 2.4384        | 6              | 1.8288      |
| European cranberry   | ou 10                        | 3.048               | 10             | 3.048         | 8              | 2.4384      |
| American cranberry   | ou 8                         | 2.4384              | 6              | 1.8288        | 4              | 1.2192      |
|                      | Average                      | 2.074984615         |                | 1.922584615   |                | 1.31298462  |