ARGOS **Autonomous Rover for Ground-based Optical Surveillance** of Co

Manufacturing Status Review February 4, 2021

Presenters: Henry Felstiner, Nick Kuljis, Margaux McFarland, Trevor Slack, Dan Stojsavljevic, Jarrod Teige

Customer: Barbara Streiffert and Jet Propulsion Laboratory

Advisor: Dr. Donna Gerren

Team: Niko de Boucaud, Henry Felstiner, Harrison Fitch, Victoria Gonzales, Nick Kuljis,

Luca Kushner, Margaux McFarland, Thomas Noll, Trevor Slack, Dan Stojsavljevic, **Jarrod Teige**

University of Colorado Boulder

Jet Propulsion Laboratory California Institute of Technology

Project Overview

Ŧ

Boulder

University of Colorado

University of

The ARGOS team shall design, build, and test a child rover that will :

- 1. Navigate to a fireline via commands from a ground station (GS) and mother rover (MR)
- 2. Collect ambient temperature data throughout the duration of the mission
- 3. Record photos/video of a flame front from the top of an extendable/retractable mast
- 4. Communicate temperature data, photos, and video to the GS/MR

CONOPS

University of Colorado Boulder

Functional Block Diagram

G

Boulder

Full Design Recap

9

Boulder

University of Colorado

Schedule

G

Boulder

University of Colorado

Work Plan - Software and Electronics/Sensors

9

Jet Propulsion Laboratory

California Institute of Technology

University of Colorado Boulder

Work Plan - COMM, Structures, and Mast/Camera

Gi

Boulder

10

Work Plan - Final Integration/Testing

Ģ

Boulder

University of Colorado

11

Manufacturing

Mechanical: Chassis

- COTS parts ordered
 - T-Slotted Framing (needs to be cut to length)
 - End-Feed Single Nuts with Button Head
 - Button Head Hex Drive Screws
 - Locknuts
- Manufactured parts highlighted in **blue**
 - Aluminum Base:
 - Needs to be CNC cut and sides need to be welded on
 - Estimated completion date: 2/12/21
 - L-Brackets

University of Colorado Boulder

- Needs to be cut and holes need to be drilled
- Estimated completion date: 2/12/21
- Aluminum Supports
 - Needs to be cut and holes need to be drilled
 - Estimated completion date: 2/12/21

Mechanical: Drivetrain

- COTS parts have been ordered
 - Motor and Gearbox
 - Bearings
 - Wheels
 - Chains and connecting link
- Manufactured parts highlighted in **blue**
 - Shafts:
 - Need to be cut to size and keyed
 - Estimated completion date: 2/12/21
 - Sprocket spacers
 - Need to be manufactured
 - Estimated completion date: 2/12/21
 - Sprockets
 - Need to be machined
 - Estimated completion date: 2/12/21

Schedule

Project Overview

> > ма

Manufacturing

Budget

Mechanical: Chassis Acrylic Housing & Sensor Mounts

- Manufactured parts highlighted in blue
 - Acrylic housing
 - Needs to be purchased and laser cut
 - Estimated completion date: 2/12/21
 - Sensor Mounts
 - Need to be 3D Printed
 - Estimated completion date: 2/12/21

Mechanical: Mast Test Rig

- Test Rig Assembly Finished
 - Testing reservoir complete
 - Test rig machined components assembled
 - Testing planned for Thursday 2/4
- Test Procedure

University of Colorado Boulder

- Pressurize reservoir with high pressure air
- Extend and retract mast multiple times
- Check for binding and/or degradation
- Seal has higher coefficient of friction than expected which may pose a problem for compression
 - Test weight force required to compress
- If test rig passes all tests without issue, hydraulic mast is chosen for the final design

Reservoir

Test Rig

Mechanical: Off-Ramp COTS Mast

Electrical

Ģ

Boulder

University of Colorado

- COTS parts ordered
 - 12 V battery
 - Sensors voltage regulators
 - All sensors Tested by 2/10
- Parts left to order
 - LS7412 Data Filter
 - Additional Wiring
 - NUC Power Cable
 - 19 V voltage regulator
- Procedures Created
 - Retool of 12 V system needed
- All Assembly Needed by 2/19
 - Soldering of power circuits
 - Soldering of data transmission lines

Electronics Diagram

20

California Institute of Technology

University of Colorado Boulder

G

Project

Purpose and

Objectives

Software

Task	Status	Number of Team Members Currently Contributing	Estimated Ready to Integrate Date	Ready for Testing/Integration with Hardware. Begins 2/8.
ROS: Localization	Ready to Integrate with Hardware	-	-	Ready for Validation
ROS: Differential Drive	Ready to Integrate with Hardware	-	-	only used for software compatible with Gazebo.
ROS: PID Path Control	Ready to Integrate with Hardware	-	-	In Progress. Being Developed by one or
UI: Surveillance Tab	Validate in Simulation	2	2/5	more team member.
UI: Movement Tab	Validate in Simulation	2	2/5	To do. Not started
UI: Camera Control	In Progress	1	2/5	dependence on other in progress
UI: Integrate with ROS	In Progress	1	2/5	software or future
Sensors: Arduino Code	In Progress	2	2/5	1031.
ROS: Loss of Comms	In Progress	1	2/5	
ROS: Integrate with Rocket M2	To Do	0	2/5 Waiting on Comms Test	
ROS: Mast Control	To Do	0	2/10 Dependent on Mast Test Rig Outcome	
	Project Overview	Schedule Manufacturing	Budget Backup Slides	

University of Colorado Boulder

Jet Propulsion Laboratory California Institute of Technology

Software: UI

- Completed
 - Movement and Surveillance Tabs
 - Camera Controlled via webpage contained in UI
- Development
 - Integration with ROS using python_qt_binding package
 - Estimated Completed Date: 2/5

Budget

Backup Slides

Software: UI

- Completed
 - Movement and Surveillance Tabs
 - Camera Controlled via webpage contained in UI
- Development
 - Integration with ROS using python_qt_binding package
 - Estimated Completed
 Date: 2/5

Project

Overview

Schedule

Manufacturing

Budget

Backup Slides

23

Jet Propulsion Laboratory

California Institute of Technolog

Budget

- Major Procurements
 - Sensors: Camera, GPS
 - Electronics: Nuc, IMU, thermometer
 - Drivetrain: Motors, gear boxes, wheels
 - Chassis: Aluminum sheet and frame
 - Communications: Rocket M2 radio
- Remaining purchases
 - Rest of mast
 - Pump and reservoir
- Ongoing Order
 - \$1,119.49 not including shipping
 - Made on 1/20/21

Expenses: \$2,543.01

Estimated Final Cost: \$3,354.72

Bill Of Materials

Component	Distributer	Quantity	Unit Price	Shipping	Total Price	Subsystem
GPS-RTK-SMA Breakout - ZED-F9P	Sparkfun	1	219.95	0	219.95	Sensors
RedLine Encoder Kit	AndyMark	2	47	0	94	Sensors
Zio Ultrasonic Distance Sensor - HC-SR04 (Qwiic)	Sparkfun	4	13.95	0	55.8	Sensors
SLAMTEC A2M8	SAMTEC	1	319		319	Sensors
Runcam Nano 2 FPV Camera	Flight Test	1	19.99		19.99	Sensors
Infrared Thermometer - MLX90614	Sparkfun	1	29.95	0	29.95	Sensors
SparkFun VR IMU Breakout - BNO080 (Qwiic)	Sparkfun	1	34.95	0	34.95	Sensors
Arduino Due	amazon	1	39.9	0	39.9	electronics
Intel NUc	Intel	1	247	10	257	electronics
Kingston A400 120G Internal SSD M.2	amazon	1	19.99	0	19.99	electronics
GPS/GNSS Magnetic Mount Antenna	Sparkfun	1	12.95	0	12.95	electronics
SPARK Brushed DC Motor Controller	AndyMark	2	50	10	110	electronics
NETGEAR 5-Port Gigabit Ethernet Unmanaged Switch (GS305)	amazon	1	15	0	15	electronics
REDGO Video Audio VHS VCR USB Video Capture Card to DVD Converter Capture Card Adapter	amazon	1	10.99	0	10.99	electronics
SMAKN Waterproof DC/DC Converter 12V (10-30V) Step UP to 48V/4A 192W Power Supply Module	Amazon	1	29.99		29.99	electronics
12V 16Ah Deep Cycle LiFePO4 Battery	Amazon	1	49.99		49.99	electronics

Qwiic JST Connector - SMD 4-pin (Horizontal)	spark fun	4	0.5	0	2	electronics
2-Bolt Flange Bearing	Grainger	6	19.35	12.83	128.93	Drivetrain
Metal Gear	McMaster	0	60.4		0	Drivetrain
Standard Sprocket	Misuni	10	8.19	13.4	95.3	Drivetrain
Radial Ball Bearing	Grainger	12	3.91	0	46.92	
Pillow Block Bearing	Grainger	6	21	0	126	Drivetrain
Talon SRX Speed Controller	AndyMark	2	99	0	198	Drivetrain
Ventilation Spacer	AndyMark	2	5	0	10	Drivetrain
1/2" Shaft	McMaster	6	8.71		52.26	Drivetrain
Chain	McMaster	10	5.49		54.9	Drivetrain
775 Redline Motor	AndyMark	2	19	8.5	46.5	Drivetrain
Swisher 13.75 in Rear Wheel	Lowe's	6	24.1	0	144.6	Drivetrain
57 Sport Gearbox	AndyMark	2	96	0	192	Drivetrain
6061 Aluminum Sheet 20x36.5	MidWest Steel & Aluminum	1	52.33	10.48	62.81	Drivetrain - Chassis
Plexiglass Black Acrylic Plate 24inx36inx1/8in	Home Depot	2	39.99	0	79.98	Drivetrain - Chassis

Plexiglass Black Acrylic Plate 24inx36inx1/8in	Home Depot	2	39.99	0	79.98	Drivetrain - Chassis
<u>1-3/4" Bore Wear Ring</u>	McMaster	2	4.73		9.46	Mast
<u>1/4 Machine Screws</u>	McMaster	2	2.83		5.66	Mast
<u>3/8 Machine Screws</u>	McMaster	2	2.74		5.48	Mast
2" OD 1.25" ID Aluminum Tube	McMaster	1	95.58		95.58	Mast
2.25" OD 1.75" ID Aluminum Tube	McMaster	1	78.26		78.26	Mast
<u>1-3/4" Bore Dynamic Seal</u>	McMaster	1	5.93		5.93	Mast
O-ring 1.25" bore x100 for whatever reason	McMaster	1	6.95		6.95	Mast
Quick Disconnect Fitting	McMaster	1	11.3		11.3	Mast
SUNBA 601-D25X	Amazon	1	269.99		269.99	Camera
Rocket M2	Amazon	2	80		160	Communication

POE TP-DCDC-1224 Adapter	PoETexas	2	5.49		10.98	Communication
TRENDnet Reverse SMA Female to N-Type Male						
Weatherproof Connector Cable (6.5ft, 2M), TEW-L202	Trendnet	1	19		19	Communication
Antenna 2.4GHz 12dBi Omni-Directional WiFi w/ RP-TNC	Data Alliance	1	8.99		8.99	Communication
1ft Cat6 550 MHz LITP Spagless Ethernet Network Patch						
Cable, Blue	Cable Leader	2	0.77		1.54	Communication
1 Foot Male to Male 2.1mm x 5.5mm Plug DC Power Adapter	Valley					
Cable 18GA	Enterprises	1	3.99		3.99	Communication
Tupavco tp511 Panel Antenna 2.4 GHz 20 dBi directional						
antenna	Tupavco	1	54.98		54.98	Communication
TP-Link 5 Port Fast Ethernet 10/100Mbps PoE Switch	Amazon	1	34.99		34.99	Communication
USB 2.0 Audio/Video Converter	Amazon	1	11.99		11.99	Communication
Total					3354.72	

Summary

University of Colorado

Boulder

- Most manufacturing completion date: 2/12
 - Mast completion date (and everything else): 3/1
- Electrical assembly completion date: 2/19
- Software completion date: 2/10
- Most all parts have arrived or have been ordered
 - Parts that have not arrived no cause for concern

Questions?

G

Boulder

University of Colorado

Backup Slides

G

Boulder

University of Colorado

Definitions

- **Fireline** : a trench cleared of any flammable material, dug at the edge of a forest or brush fire to halt the spread
- Flame Front : the leading edge of the forest fire perimeter
- **Survey** : to record video/take photos
- **Fire Surveillance** : a subsystem of ARGOS consisting of the sensors and components needed to survey the fire line
- **<u>Tipping Condition</u>** : condition when rover tips too far to the side or in the front or back and falls over
- **Obstacles** : rocks, tree stumps, fallen branches, or other debris found on the forest floor which can have heights up to 7cm
- <u>Tree density</u>: measure of how many trees will be in an area (# trees/acres)
- **Terrain** : specification of the forest floor which ARGOS must traverse (detailed definition in backup slides)

35

alifornia Institute of Technole

Functional Requirements

Requirement ID	Requirement Description
FR.1	The child rover shall move from a starting location to a commanded location of interest and return back to the starting location.
FR.2	The child rover shall take pictures, videos and ambient temperature data to be sent to the ground station.
FR.3	The child rover shall use a mast to take photos and video from a vantage point above the rover's body.
FR.4	The child rover shall receive commands from both the ground station and the mother rover and transmit captured data back to the ground station and the mother rover.

Ģ

Boulder

University of Colorado

FR. 1 The child rover shall move from a starting location to a commanded location of interest and return back to the starting location.

Design Requirement ID	Description			
MOV.1.1	The child rover shall be able to perform a 360 degree turn.			
MOV.1.2	The child rover shall be able to travel in forward and reverse motion.			
MOV.1.3	The child rover shall be able to travel up and down slopes of 20 legree inclination.			
MOV.1.4	The child rover shall be able to travel over obstacles with heights a tall as 7cm.			
MOV.1.5	The child rover shall be able to travel 250m round trip in any direction from its starting location.			
CDH.1.1	The child rover shall be able to detect when a tipping condition is met(when the rover falls over) and send an alert to the ground station/mother rover.			

Ģ

Boulder

University of Colorado

FR. 2 The child rover shall take pictures, videos and ambient temperature data to be sent to the ground station.

Design			
Requirement ID	Description		
SURV.2.1	The camera shall have >100 degrees field of view.		
SURV.2.2	The camera shall provide operator with pictures and video of fire that occupy at least 20% of the vertical image.		
CDH.2.3	The child rover shall be able to determine the ambient temperature within +/- 1 °K at the location of interest.		

F

Boulder

University of Colorado

FR. 3 The child rover shall use a mast to take photos and video from a vantage point above the rover's body.

Design Requirement ID	Description
SURV.3.1	The child rover shall have a mast capable of extending to a height of 2m and retracting back down to its original height.
SURV.3.2	The child rover shall have a mast capable of supporting 10kg of weight on the top.

FR. 4 The child rover shall receive commands from both the ground station and the mother rover and transmit captured data to the ground station and the mother rover.

Design Requirement ID	Description			
COM.4.1	Upon loss of communication, the child rover shall return to its last known GPS location (storage of waypoints).			
COM.4.2	The child rover shall send time stamped video, image, and temperature lata to the ground station and mother rover at a data rate up 25Mbps.			
COM.4.3	The ground station shall confirm if the child is within +/- 5m of the desired location.			
COM.4.4	The child rover shall send its location every 1.5s to the ground station/mother rover.			
COM.4.5	The mother rover/ground station shall be able to command the child rover to navigate to specified GPS coordinates in real time .			
COM.4.6	The mother rover/ground station shall be able to command video feed on/off.			
COM.4.7	The mother rover shall be able to receive commands from the ground station at a data rate up 25Mbps.			
COM.4.8	The mother rover shall be able to send temperature data and video to the ground station and vice versa.			

Project Overview

Man

Schedule

Manufacturing

Budget

Backup Slides

Loss of Communications CONOPS

Levels of Success

G

Boulder

University of Colorado

	Rover Movements	Surveillance	Communications
Level 1	Rover can travel on flat ground for 100m. Rover can travel in the forward direction and can turn 360 degrees with a turn radius less than two rover body lengths.	Ambient temperature data is recorded from a temperature sensor with an accuracy of +/-1 °C throughout the mission. Rover records timestamped photos of the flame front via a camera on a mast.	Rover can receive GPS commands from the ground station and the mother rover. Rover can transmit temperature data and video/images to the ground station and mother rover at 1 Hz 0m from ground station or in the same room via radio remote control.
Level 2	Rover can travel on various terrain, including leaves, scattered underbrush, dirt and mud, while staying upright. Rover can travel on a 20 degree incline. Rover can turn 360 degrees with a turn radius less than one rover body length.	Rover records timestamped video of the flame front via a camera on a mast.	Rover can communicate with the ground station and the mother rover up to 100m with no obstacles (0 trees/m2).
Level 3	Rover can turn 360 degrees on the spot. Rover can follow GPS waypoints and detect large obstacles, such as trees and dense bushes, in its path and avoid hitting them. Rover can detect a tipping condition by measuring its angular motion.	Rover's mast is extendable and retractable.	Rover can communicate with the ground station and the mother rover with obstacles (0.25 trees/m ²).
Level 4	Rover can detect small obstacles, such as rocks and small bushes, and navigate a path around them. Rover can navigate to a GPS waypoint within $+/-5m$ of the coordinates.	N/A	Rover can communicate with the ground station and the mother rover up to 250m.

Final Design With Top Panels

• Panels made of acrylic

Ģ

Boulder

University of Colorado

 Connected using angled aluminum brackets

Communications

Update:

• Comm parts are being shipped

Tasks:

Establish comm link between radios

Project

Overview

 Analyze bandwidth, latency, and power received up to 250m.

Schedule

Propulsion Laboratory

California Institute of Technolo

University of Colorado Boulder

Software Diagram

Power Diagram

49

Subsystem Breakdown

Hydraulic Mast

Subsystem	Total
Sensors	\$773.64
Electronics	\$547.81
Drivetrain	\$1,048.49
Chassis	\$142.79
Camera	\$269.99
Test Rig	\$218.62
Hydraulic Mast	\$400.00
Communications	\$306.46
Total	\$3,707.80
Remaining	\$1,292.20

Off-Ramp Mast

Subsystem	Total
Sensors	\$773.64
Electronics	\$547.81
Drivetrain	\$1,048.49
Chassis	\$142.79
Camera	\$269.99
Test Rig	\$218.62
Off Ramp Mast	\$900.00
Communications	\$306.46
Total	\$4,207.80
Remaining	\$792.20

Backup Slides

Forest Research : Trees

~

 C C 1

1

Source : https://www	.rs.rea.us/psw/publi	cations/documents/crre	es_series/crres_i	tr_arswp416.pdf
Tree Species	Average Height (ft)	Max Crown Length (ft)	Difference (ft)	Difference (m)
Ponderosa Pine	80	48.4	31.6	9.63168
Sugar Pine	175	19.6	155.4	47.36592
Western White Pine	175	48.95	126.05	38.42004
Lodgepole Pine	75	45.6	29.4	8.96112
Loblolly Pine	100	21.3	78.7	23.98776
White fir	50	49.4	0.6	0.18288
Grand fir	150	61.95	88.05	26.83764
Douglas fir	55	42.5	12.5	3.81
Engelmann Spruce	87.5	47.7	39.8	12.13104
Western Hemlock	125	39.45	85.55	26.07564
Incense Cedar	126.5	27.6	98.9	30.14472
Western Redcedar	200	31.9	168.1	51.23688
Western Larch	140	38.7	101.3	30.87624
			Average	23.82012

.

44.0 10

Project Overview Schedule Manufacturing Budget Backup Slides

University of Colorado Boulder

Forest Research : Shrubs/Bushes

Source: https	://extension.colostate	.edu/topic-areas/yard-garden/t	rees-and-shrubs-for-m	ountain-areas-7	-423/		
		Native Colorado Shrubs					
	Shrub Speciies	Max Height (when mature, ft)	Max Height (meters)	Max Width (ft)	Max Width (m)	Min Width (ft)	Min Width (f
	Red chokeberry	6	1.8288	4	1.2192	2	0.6096
	Black chokeberry	5	1.524	5	1.524	2	0.6096
	Japanese barberry	5	1.524	5	1.524	2	0.6096
	Siberian peashrub	10	3.048	6	1.8288	4	1.2192
	Peking or Hedge cotor	8	2.4384	6	1.8288	4	1.2192
	Burning bush	6	1.8288	6	1.8288	4	1.2192
	Forsythia	6	1.8288	8	2.4384	6	1.8288
	Creeping juniper	2	0.6096	6	1.8288	4	1.2192
	Savin juniper	4	1.2192	6	1.8288	4	1.2192
	'Cheyenne' Cheyenne	6	1.8288	6	1.8288	4	1.2192
	'Cheyenne' Cheyenne	6	1.8288	5	1.524	4	1.2192
	Common ninebark	6	1.8288	6	1.8288	4	1.2192
	Nanking cherry	8	2.4384	8	2.4384	6	1.8288
	Purpleleaf sand cherry	6	1.8288	6	1.8288	4	1.2192
	Staghorn sumac	12	3.6576	8	2.4384	6	1.8288
	Alpine currant	4	1.2192	4	1.2192	3	0.9144
	Elderberry	8	2.4384	8	2.4384	6	1.8288
	Ash-leaf spirea or Ura	6	1.8288	6	1.8288	4	1.2192
	Vanhoutte spirea	6	1.8288	6	1.8288	4	1.2192
	Coralberry, buckbrush	5	1.524	5	1.524	3	0.9144
	Common lilac	8	2.4384	6	1.8288	4	1.2192
	Preston or Canadian li	8	2.4384	6	1.8288	4	1.2192
	Wayfaringtree viburn	8	2.4384	8	2.4384	6	1.8288
	Nannyberry viburnum	10	3.048	8	2.4384	6	1.8288
	European cranberrybu	10	3.048	10	3.048	8	2.4384
	American cranberrybu	8	2.4384	6	1.8288	4	1.2192
		Average	2.074984615		1.922584615		1.31298462

Full Gantt Chart

	11	L
ARGOS	Oh	65%
PDR	Un	100%
CDR	Oh	100%
Risk Analysis	Oh	100%
Feasibility Studies/Design Requirem	Oh	100%
Final Design	Oh	99%
Final Report	Oh	100%
Spring Semester	Oh	35%
Parts/Materials Procurement	0	70%
Software	Oh	63%
Create UI	0	70%
Robot Localization Code	0	100%
Differential Drive Control Code	0	100%
Loss of COMMs Code	0	100%
PID Path Controller	0	100%
Camera Control Code	0	30%
Mast Control Code	0	30%
Unit Test Plan Development	0	100%
Unit Test Code	0	0%
Electronics/Sensors	Oh	38%
Create Electrical Schematic	0	100%
Build Test Circuit	0	0%
Sensor Integration Code	0	0%
Test Individual Sensors	0	0%
Integrate Sensors and Electronics	0	0%
Test Kalman Filter	0	0%
Test Throughput and Electrical Conn	0	0%
СОММ	Oh	18%
COMM Test Plan Development	0	70%
Live Video Test	0	0%
Commands Test	0	0%
Structures	Oh	19%
Structures Drawings	0	100%
Manufacture Chassis	0	0%
Assemble Drivetrain - Motors/Gearbox	0	0%
Drivetrain + Chassis Integration	0	0%
Mobility/Obstacle Traversing Tests	0	0%
Mast/Camera	Oh	10%
Mast Test Rig Test Development	0	100%
2-Stage Mast Test Big Test	0	0%
Decide on Mast Design	0	0%
Manufacture Mast Stages	0	0%
Finish Manufacturing	0	0%
Order COTS Mast/Pump	0	0%
Mast + Pump Integration	0	0%
Mast Camera Control Test	0	0%
Mast Control Test	0	0%
Full System Integration	on	0%
Full System Test Plan Development	0	0%
Manual Control Test	0	0%
Loss of Comm Test	0	0%
Mission Simulation	0	0%
SFR Due	0	0%