Astro-Robotic Garden Harvester (ARGH)

Members: Aurash Filsoof, Kyle Fingerhut, Noah Kendall, Evan Luebbert, Cameron Mitchell, Samuel Oberg, Connor O'Reilly, Dominic Plaia, Collin Rasbid, Evan Shults, Thomas Shepard, Panitnan Yuvanondha

Presenters: Kyle Fingerhut, Noah Kendall, Evan Luebbert, Cameron Mitchell, Connor O'Reilly, Dominic Plaia, Thomas Shepard

Purpose & Objectives

Customer Requirements

Remotely Collect Information

Remote Station Oversight

Physical Interaction

Automation

Purpose & Objectives

Critical Project Design Solution Elements

Requirements & Satisfaction

Risks

Verification 8

Validatior

Planning

Space Gardening

Concept of Operations

Concept of Operations (cont.)

Concept of Operations

Design Solution

Design Solution - Arm

• Universal Robotics UR10e provided by

Sierra Space

• Great dexterity with minimal error

Maximum Reach	1.3 m	
Mass	33.5 kg	
Pose Repeatability	0.05 mm	
Power Requirements	350 W	
Maximum Payload	12.5 kg	

Axis movement	Working range	Maximum speed
Base	± 360°	± 120°/s
Shoulder	± 360°	± 120°/s
Elbow	± 360°	± 180°/s
Wrist 1	± 360°	± 180°/s
Wrist 2	± 360°	± 180°/s
Wrist 3	± 360°	± 180°/s

Purpose & Design Solution Critical Project Elements & Requirements & Risks Verification & Planning

Design Solution - Object Recognition

- Mask R-CNN
- Machine learning image processing software
- Higher precision relative to other softwares
- Longer processing time

Design Solution - End Effector

- Robotiq 2F-85
- Acquired by Sierra Space
- Can be programmed to close at a given distance

Mass	0.9 kg
Minimum Object Diameter	45 mm (Encompassing Enclosure Method)
Stroke	85 mm
Communication	Modbus RTU

Design Solution - Sensor

- Intel Realsense D435
- Both RGB and Depth sensing
- Intel software package compatible with ROS, python, matlab and other languages

Dimensions	124 mm × 26 mm × 29 mm	
Power Requirements	3.5 W	
Frame Rate10 - 90 fps depending on depth requirements		
Accuracy	\leq 2% (up to 2 Meters and 80% ROI, HD Resolution)	

System Block Diagram

Software Block Diagram

Critical Project Elements

Sensor Positioning

- **Object Recognition**
- <u>Robotics/Pathfinding</u>

Sensor Mounting

Sensor Mounting

Sensor Positioning

Sensor Positioning

Cart Mounted

Multiple locations to increase object

detection and path optimization

Live Image Feedback

Object Recognition

"Are you able to detect tomatoes and separate them from their surroundings"

Two Viable Network Choices

Mean Average Precision: 0.84

Selected Network

YOLACT

Mean Average Precision: 0.30

Robotics

Core Elements:

- Self Collision Avoidance
- Pathing
- Object Collision Avoidance
- Practical Agility

Robotics (Self Collision Avoidance)

ion Generated Co Mesh

"Will a desired position cause the robot to intersect/damage itself?"

Generated from UR10e .URDF file

- 'Universal Robotic Description Format'

'Monte Carlo' Mesh Generation

- Movelt! Setup

Robotics (Pathing)

Simple Pathing Demo Movelt! & RViz

"What is the fastest¹ way to get from position A to position B?"

Movelt! w/ integrated 'RRTConnect'² algorithm for inverse kinematics

- Constrained by:
 - Joint limits
 - $\circ \quad \text{Self-Collision Mesh} \\$
- 'Special Case' Pathing Requirements:
 - Sensor Repositioning: Linear Pathing
 - 'Complex' Harvest Positions: Cartesian End-Effector Pathing

¹Most efficient, ie least possible movements ²'Rapidly-exploring Random Trees'

Robotics (Object Collision Avoidance)

Object Avoidance Demo Movelt! & RViz "Will the desired path lead to <u>intersection</u> between collision mesh and objects in the environment?"

- If no:
 - Execute movement
- If yes:
 - Execute until defined 'collision threshold'
 - Re-plan movement path
 - Check for new collisions along new path
 - Repeat

'Collision' -> Any intersection of Robot's collision mesh with objects in environment

Robotics (Practical Agility)

Purpose &

Objectives

Design Solution

Critical Project

Elements

Requirements &

Satisfaction

'Is the robot physically capable/sufficiently dextrous to complete the required motions?'

- Harvesting
 - Move end effector to directed position and rotate along base axis
- Sensor Positioning

Verification &

Validation

Risks

 Move to three preset positions and repeat

Planning

Project Risks

Purpose & Design Solution Critical Project Elements & Requirements & Risks Verification & Planning

Primary Project Risks

ARGH RISK	Negligible (1)	Minor (2)	Serious(4)	Critical (7)	Catastrophic (11)
Improbable (1)					
Remote (2)					
Occasional (3)			Incorrect Object Detection Sensor Calibration Liquid Damage Machine Learning Failure	Robot Collision	
Probable (4)					
Frequent (5)					

 Purpose & Objectives
 Design Solution
 Critical Project Elements
 Requirements & Satisfaction
 Risks
 Verification & Validation
 Planning

Sensor Mounting Error

- Many sources of error
 - Mounting
 - Pointing/Rolling
 - Depth
- Transform between frames
 - Arm/Mounting Frame
 - Camera Cartesian Pointing
 - Camera Cylindrical Pointing
- Final Errors:
 - In-Plane Radial Error
 - Out-of-Plane Error
- Resulting in total 3D radial error

Sensor - Orthogonal Plane Error

Mounting Frame Error

- Along the rail (y-axis)
 - Additional error due to arm

inaccuracy, sliding

- Across the rail (x-axis)
- Up and down from rail (z-axis)

Rotate 21 degrees into pointing frame.

Sensor - Orthogonal Plane Error

Errors

- Rolling
 - Due to misalignment of grid
 - Proportional to distance from centerline
- Pointing
 - Due to pitch and yaw
 - Proportional to distance from camera

Sensor - Out-of-Plane Error

Depth Sensor

• Due to intrinsic properties of

camera

• Error proportional to depth

Sensor - Total Error

Cylindrical Coordinates

- Radial In-Plane Error
- Pointing Axis Error

Sensor - FOV limitations

Limitations

• Plant appears larger in frame when

closer or larger

- Camera has a maximum FOV
- Camera has a minimum distance to closest point on plant

Robotics

Pointing Accuracy (End Effector)

- Repeat a commanded pose
- Measure end effector variance

Gripper Capability Assessment

- Twisting Capability
- Gripper Grasp Repeatability

Tomato Interaction Reliability

- Vine Interactions
- Extensive Tomato Grasp Tests
- 'Imperfect' Gripper Positioning

Purpose & Design Solution Critical Project Elements & Requirements & Risks Verification & Planning

Fall Planning

Spring Planning

Planning

Planning

Planning

Cost Plan

Provided Items, Cost = \$0.00

- UR-10e Robotic Arm
- Intel Realsense D435 sensor
- Robotiq 2F-85 gripper

Manufacturing Workshop Training, Cost = \$40.00

- 2 team members require manufacturing training
- Max Cost of \$40.00 if a second training required

PC component requirements, Cost = \$3,000.00

- Max Cost \$3000.00
- Storage: SSD M.2, 256 GB
- RAM: DDR4, 16 GB
- CPU: Modern, Intel i7
- GPU: CUDA Capable, 8/12 GB
- Motherboard: USB-C & Ethernet capable

Design Solution

Purpose & Objectives Critical Project Elements Requirements & Satisfaction

Risks

Planning

Validation

ARGH Budget

Provided Funds: + \$5000.00 Pilot Damage Deposit: - \$200.00 Training: - \$40.00 PC: - \$3000.00 USB-c Cable: - \$30.00 Remote desktop software: - \$500.00 annually Provided technology: - \$0.00 All values are max potential cost, Max projected cost = \$3670.00

Remaining Funds: + \$5000.00 ***** □ Select 2 to compare = \$4800.00 MICTO CENTE QUICK = \$4760.00 = \$1760.00 AN EXCLUSIVE PLATINUM COLLECTION ITEM! ASUS ROG Strix GA15 GA15DK-MB571 = \$1730.00 Gaming PC Platinum Collection; AMD Rvzen 5 5600X 3.7GHz Processor: NVIDIA GeForce RTX 3070 8GB DDR6 32GB DDR4-3200 RAM; 1TB SSD boot = \$1230.00 drive+1TB HDD SKU: 299313 19 IN STOCK = \$1230.00 \$2,299,99 SAVE \$500.00 \$1,799.99

Purpose & Design Solution Critical Project Elements & Requirements & Risks Verification & Planning

Safety Risk

Astro-Robotic Garden Harvester Thomas Shepard, Even Shults, Aurash Filsoof, Evan Luebert, Samuel Oberg, Panitnan Yuvanondha

days w/ no accidentz:

Backup Slides

YOLACT Network (Requirements & Satisfaction)

Purpose & Design Solution Critical Project Elements & Requirements & Risks Verification & Planning

MaskRCNN Network (Requirements & Satisfaction)

Model

- Force is limited by friction and internal tomato maximum
- Forces as function of deformation
- Deformation is commanded by gripper diameter

Assumptions

- Small cross section of actual continuous contact
- Internal forces in tomato and foam are the same
- Parameters for tomato were chosen based on specific data from research papers

Reality

- Contact changes with compression (Positive)
- Parameters of tomato may change with variety and ripeness

Furthermore, gravity is present

The variable f0/Ef represents the thickness to the Young's Modulus ratio of the foam.

The system can be treated as a tomato which is wider: Total deformation is absorbed nonlinearly by the foam.

Weaker foam requires more foam to produce the minimum required force for friction, but also makes up for more of the total deformation.

Purpose &

Objectives

Design Solution

As the foam gets weaker, or conversely thicker, the minimum and maximum allowable grip diameter separates, allowing the inherent error to produce safe results.

This results in a minimum ratio which produces acceptable results based on the system parameters used.

Purpose &

Objectives

Design Solution

The total deformation of the tomato can be commanded through the gripper diameter by following 3 separate rules:

- Matching the minimum force for necessary friction
- Matching the average force for average deformation allowable
- Matching the maximum force for maximum deformation

Thus, a selection of a mixture between the low range and mid range would be desirable.

Several other parameters alter the bounds by which deformation is allowable: Mass, Diameter, and Area of Contact. Area produces some of the best effects by drastically reducing the minimum force required to produce the necessary friction.

Diameter allows for more deformation, but there are inherent limitations as the gripper diameter must exceed the tomato and two slices of foam in dimensions.

Mass inversely impacts the range, restricting it by requiring more friction to maintain grip. This is ignorable in space due to low gravity.

Deformation of foam can cause cell collapse at only 10% deformation, this is impossible to avoid based on the model and tomato diameter.

Instead, deformation total of 60% (within plateau region) for 15mm of foam.

Thus a desirable f0/Ef ratio is no more than 2, but given the worst case parameters used, should not be below 1.

The resulting Ef ranges from 7.5-15 MPa. Lower Ef's are also allowable as contacting area should increase with deformation.

Sensor Mounting (Dimension)

 Purpose & Objectives
 Design Solution
 Critical Project Elements
 Requirements & Satisfaction
 Risks
 Verification & Validation
 Planning

Sensor Mounting (Different Views)

Robotics Backup

Movement		
Pose Repeatability per ISO 9283	± 0.05 mm	
Axis movement	Working range	Maximum speed
Base	± 360°	± 120°/s
Shoulder	± 360°	± 120°/s
Elbow	± 360°	± 180°/s
Wrist 1	± 360°	± 180°/s
Wrist 2	± 360°	± 180°/s
Wrist 3	± 360°	± 180°/s
Typical TCP speed	1 m/s (39.4 in/s)	
Communication	500 Hz Control freq Modbus TCP PROFINET Ethernet/IP USB 2.0, USB 3.0	uency
Power source	100-240VAC, 47-440H	z

 Purpose & Objectives
 Design Solution
 Critical Project Elements
 Requirements & Satisfaction
 Risks
 Verification & Validation
 Planning

Project Risk Analysis

	Probability
	Very unlikely to occur during the life of the
Improbable	device
Remote	Unlikely in common use
	Occurs infrequently but may occur under certain
Occasional	identifiable conditions
	Expected to occur with some regularity;
	Feedback and analysis can verify predictablity of
Probable	occurrence
Frequent	Occurs on a regular basis

	Severity
	Nuisance w/ little or no potential to result in damage to robotic device
Negligible	or environment. Human safety unaffected by device.
Minor	Annoyance. Potential reduction in device accuracy. Not expected to result in any damage to plant specimen or device. Human safety unaffected by device.
Serious	Partial system functionality loss, device accuracy reduced. Potential damage to test specimen or device. Human safety unaffected by device.
Critical	Subsystem failure, device functionality greatly reduced. Imminent damge to test environment (specimen and/or housing bay). Potential for human contact injury.
Catastrophic	System failure. Imminent damage to device and test environment. Potential for serious human injury.

Planning

Verification &

Validation

	Severity	Negligible	Minor	Serious	Critical	Catastrophic	
Probability		1	2	4	7	11	
Improbable	1	1	2	4	7	11	
Remote	2	2	4	8	14	22	Critic
Occasional	3	3	6	12	21	33	
Probable	4	4	8	16	28	44	
Frequent	5	5	10	20	35	55	Catas
		Purpose & Objectives	Design Solution	Critical Project Elements	Requiremen		

Project Risk Analysis

- Collision between robot and environment
 - Under defined bounding box
 - Change of environment
- Collision between different parts of robot
- Collision between arm and sensor
- Power loss / electrical failure
 - Cord cut
 - Cord unplugged
 - Environment power loss

- Sensor calibration error
- Incorrect object detection
 - Non-detection
 - Incorrectly determines ripeness
 - Incorrectly identifies tomato
- Gripper calibration
- Liquid damage to robot
 - Water drippage
 - Busted tomato
- Machine learning doesn't work

Project Risk Mitigation

- Robot collision
 - Place boundary zone with lockout procedures.
 - Conduct daily human visual inspection
 - Adjust bounding box to place obstructions around sensor to prevent unintended collisions but allow a single, pre-trained path for sensor movement
 - On sensor movement, test with dummy sensor to prevent damage, and check calibration at specified time intervals
- Machine learning failure

Purpose &

Objectives

 Risk was mitigated by working with 2 different machine learning programs. Both now work, so no longer a risk.

Design Solution

Critical Project

Elements

Requirements &

Satisfaction

Incorrect object detection

Verification &

Validation

- Ripeness is as soon as red is visible. Therefore, only pick tomatoes that have a mask generated from at least 50% red (Up to change)
- Continuous training until desired accuracy is achieved
- Liquid damage

Risks

 Waterproof seal of some form on joints; Possible option: Use 2 circular shells at each joint(one just smaller than other), to prevent liquid from getting in joints. Do a bi-weekly inspection to ensure no spillage gets in

Planning

Ripeness Flow Chart

Workload																		
Search Q 🖻 🛞 Person ∇ Filter \sim																		
	October 2021					November 2021				December 2021					January 2022			
≤	10	W41 11-17	W42 18-24	W43 25-31	W44 1-7	W45 8-14	W46 15-21	W47 22-28	W48 29 - Dec 5	W49 6-12	W50 13-19	W51 20-26	W52 27 - Jan 2	W1 3-9	W2 10-16	W3 17-23	W4 24-30	
connor.oreilly@col				•,	• • • •	• • •	2	2	2									
noah.kendali@col					• • • •													
Dominic Plaia Finance Lead					2													
Evan Luebbert					2				3									
Evan Shults Electronics Lead				•	•	2	2											
Aurash Filsoof Manufacturing Lead																		
Thomas.Shepherd				• 3	3													
Panitnan Yuvanon																		
Kyle Fingerhut				•		2	• 2			2								
Collin Rasbid Object Recognition Le							3											
samuel.oberg@co																		
CM Cameron Mitchell Safety Lead				•	•													