NanoSAM II

Nano-Stratospheric Aerosol Measurement

Critical Design Review

November 24, 2020

Ball Aerospace

University of Colorado Boulder Department of Aerospace Engineering Sciences

Agenda

NanoSAM II CDR

Purpose and Objectives

Design Solution Overview

Critical Project Elements

Design Requirements & Satisfaction

Project Risks

Verification & Validation

Project Planning

Project Purpose and Objectives

Jaret Anderson

Project Background & Purpose

Requirements

Description

SAM/SAGE Instruments NanoSAM I NanoSAM II (1979-1984, 2001-2006, 2011-Current) (2019 - 2020)(2020-Current) Bulky, High Cost, Low Data Volume **Optical Instrument for** Integrated 0.5U **CubeSat Footprint CubeSat Payload** SAGE III on ISS [4]

Risks

NanoSAM Mission CONOPS

Design Solution

Emma Tomlinson

NanoSAM II CAD

Description

Requirements

Risks

V&V

NanoSAM II Dimensioned Drawing

8

Optics Instrument Overview

Critical Project Elements

Donavon Schroeder

Critical Project Elements

Structure

Vibrational Modes Simulation & Testing

Optics

Match SAM-II Instrument Legacy Performance

Electronics

Requirements

Low-Noise Signal Processing

Risks

Timely and Reliable Data Collection

Design Requirements and their Satisfaction

Ryan Smithers

Jaret Anderson

Donavon Schroeder

Emma Tomlinson

Structure Relevant Requirements

Risks

V&V

4.0: Payload Dimensions

- Payload size must be less than 0.5U
- Payload mass less than 0.615 kg

5.0: Flight Testing

- Payload can survive vibrational, thermal, and vacuum testing
 - Survives a temperature range of -20°C to 50°C [1]
 - No resonant frequencies below 100Hz [1]

Requirements

Requirements Satisfaction

- Current dimensions, with
 walls: 9.92cm x 4.92cm x
 9.96cm
- Current mass of .480 kg
- P_{heater} = 3 W
- Lowest structural resonant frequency: 904 Hz

Vibrational Study – CubeSat Mount

Vibrational Study – Structural Vibe Test FEA

Risks

Commercial CubeSat Interface Mount - PC104 Specs [8]

Requirements

Boundary Condition:

Lowest Frequency: 906 Hz

Planning

V&V

No resonant frequencies below 100Hz requirement

Optics Relevant Requirements

Risks

1.0: Data Capture

- Optical and Electrical Subsystems shall communicate mission data through the photodiode connection

3.0: SAM-II Equivalent Optics

- The optics system shall capture light at a center wavelength of 1.02 μm
- The optical design shall have a vertical resolution of 1 km

Requirements

- The FOV shall be 1.3 arcminutes to achieve a vertical resolution of 1 km
- The imager shall have a MTF of 0.74 at the chosen spatial frequency in order to meet the resolution and contrast of the SAM-II system

4.0: Payload Dimensions

Description

- Payload size must be less than 0.5U
- Payload mass less than 0.615 kg

Requirements Satisfaction

- Bandpass filter and longwave pass filter to isolate 1.02 µm light
- Herschelian Telescope with 25.4 mm diameter, 30° off-axis angle OAP mirror, focal length of 54.45 mm
- 20 x 5 mm aperture,
 pinhole of 15 µm diameter
- Fits within dimensions described

Optics Modifications for Alignment

Risks

- Previous Alignment Procedure: Concave Return Sphere
 - Unable to borrow or buy a Concave Sphere
- Modify Alignment Procedure: Convex Return Sphere (very smooth Steel Balls)
 - Easily acquired

Description

• Requires Tooling to be placed on the focus of the OAP

Requirements

• Large ball bearing is better for alignment

Planning

*Above Diagrams not to scale

Optics Modifications

During Alignment

During Measurement

Optics Bench with 19.05 mm Return Sphere Placed on focus

Description

Requirements

Risks

Optics Bench with Photodiode Block aligned on focus

Optics Photodiode Parameters

Photodiode Spectral Responsivity from ThorLabs

Description

Requirements

 $P_{inc} = FOV/\theta_{sd}^2 \Phi BW A_{ap}F_{sd}F_{sys}$ (1) $\Delta\lambda = 0.0089 \text{ T} - 0.2174 \text{ nm}$ (2) $P_{inc} = -9.059 \times 10^{-8} \text{ T} + 0.00658 \text{ W}$ (3)(4) $R_{25^{\circ}C} = 0.3925 \text{ A/W}$

 $\Delta R = 0.01 * 0.0092 * (\lambda + \Delta \lambda - 952.9)$ (5)

Risks

(6) R = $R_{25^{\circ}C}$ + ΔR = 0.0024 T + 0.3322 A/W

Max incident power: 0.0066 W Sunset: Max R: 0.3660 A/W Min R: 0.3653 A/W Sunrise: Max R: 0.3456 A/W Min R: 0.3439 A/W

Planning

RESPONSE IN PERCENT

DEVIAATION

Deviation in Spectral Responsivity

15'C

20°C

35°C

30°C

WAVELENGTH IN NANOMETERS

35°C

30°C

20°C

15°C

25°C

1000

Electronics Relevant Requirements

Risks

1.0: Data Capture

- Communicates via photodiode with optical bench
- Samples, processes, and stores data at a rate greater than 50 Hz
- Data is collected in a 10 bit resolution
- Enough storage space for one orbital period
- Housekeeping data is stored (temperature, voltages)
- The system uses less than 7.3W

2.0: Communications

- Comms with laptop for ground testing
- Signal to noise ratio (SNR) greater than 3500

Requirements

4.0: Payload Dimensions

Description

- Payload size must be less than 0.5U
- Payload mass less than 0.615 kg

Requirements Satisfaction (Unchanged since PDR) [6]

- Shielded wire photodiode attachment
- Transimpedance Amp
- 16 bit ADC
- 833 Hz sampling
- 256 Mb Flash Storage
- Thermistor Monitoring
- Analog Housekeeping
- USB I/O

- High Efficiency Vreg
- Dual-Board Design

Digital Board Layout

Temperature Monitoring Correction

Description

Requirements

Texas Instruments LMT86LP

-10.9 mV/°C slope

Sampled w/ 12 bit ADC: = 0.8mV LSB = 0.043°C resolution

Risks

High precision analog optics bench temperature sensor to track temperature-related errors, correct these errors in software - 0.0198 V/K

Temperature Change on the Photodiode Block

Data Window	Max ΔT (K)	Time (s)
Sunset	0.28	192.6
Sunrise	0.70	192.6

• Calculated for β = 60° (orbital parameters corresponding to maximum length data window)

Risks

- Average values used for albedo, IR, and solar radiation [2]
- 0.7P_{i max} used in model alongside a 3 W heater

Requirements

• Black anodize exterior coating [3]

Description

- No longer lumped system analysis (done through Solidworks + MATLAB modeling)
 - Threads and screws removed along with small holes

Software Relevant Requirements

1.0: Data Capture

- Data collection is timed to capture both sunrise and sunset through the stratosphere
- Samples, processes, and stores data at a rate of 50 Hz or greater
- Baseline irradiance data is measured for each sample window
- Housekeeping data is stored and monitored for irregularities
 - Temperature, memory usage, voltages
- Errors in data are detected and corrected

2.0: Communications

Description

 A warning is downlinked when an anomaly in housekeeping data is detected

Requirements

- Total data volume, including EDAC, does not exceed the data volume of a 9.6 kbps downlink over a 5 minute window per day.

Risks

Requirements Satisfaction

- Data capture timing triggered by photodiode signal
- Data stored in continuous data buffer which includes baseline data
- Hamming code EDAC to protect against SEEs

SOFTWARE CONOPS

Stratospheric Area of Interest

Irradiance data collection begins. Data is continuously gathered and stored in a temporary data buffer.

Stratospheric data window begins when NanoSAM is aligned with the stratopause. No explicit action is taken.

Sunset detected as photodiode signal crosses below threshold value. Data buffer is processed and copied to long-term memory.

All low priority commands in the command queue are executed and memory is scrubbed for errors.

- Science data and system state data are transmitted to ground receiver.

NanoSAM listens for commands. High priority commands are executed immediately, low priority commands are added to the command queue.

Sunrise detected as photodiode signal crosses above threshold value. The collection window timer starts with the same duration as the data buffer.

Collection window timer expires. Data buffer is processed and copied to long-term memory. Software enters standby.

Event
 General Software Function
 Seguential action taken by software

26

STANDBY

STANDBY

LOOKING FOR

CAPTURING

SUNRISE

SUNRISE

CAPTURING SUNSET

Software Sequence

Teensy 4.0 Code and Development Status

- Teensy code written in modified Arduino language based on C++
 - Most Arduino libraries compatible with Teensy
 - Program logic designed in pseudocode
 - Each software module defined with functionality, inputs/outputs, and relationships to other modules

Description

Requirements

```
Timing
   pdThreshold = <minimum photodiode signal to be confident that we are pointed at the sun>
   sweepTimeout = <max time to reverse sweep>
   enum timingState
    Temperature Control
        TempThresholdHigh = <target temp> + <some margin>
        TempThresholdLow = <min safe temp> + <some other margin>
                                                                                                    er
       This version will result in oscillating temperature but requires less switching on/off of the beater
      Hamming EDAC
void
           segmentSize = <bit length of each segment in data blocks>
       dataBlockWithEDAC t applyHamming(dataBlock)
           // applies Hamming code EDAC to a data block and returns a new data block with embedded EDAC data
           // declare dataBlockWithEDAC
           dataBlockWithEDAC t dataBlockWithEDAC
           doHammingStuff() // placeholder for EDAC encoding
           /* The way this is done is super cool and something I (Jackson) would love to do,
           but needs a bit more research to make it scalable to arbitrary block sizes */
           // We can also just use an existing library
           // return data with EDAC code embedded
           return dataBlockWithEDAC
   else
   1
       errorReport t detectErrors(dataBlockWithEDAC)
           // takes a data block, checks for errors, returns an error report
           // declare errorReport
           errorReport t errorReport
           // scan for errors and report size of error between 0 and 2
           errorReport.errorSize = runReverseHammingCodeAndTellHowBigTheErrorIs(dataBlockWithEDAC) // obviously
           if (errorSize == 1) // we can only correct single bit errors with Hamming codes
                   errorReport.errorLocation = findTheError(dataBlockWithEDAC) // another placeholder
```

Project Risks

Dan Wagner

Risk Matrix (Pre-Mitigation)

	Negligible Impact	Low Impact	Moderate Impact	Extreme Impact	Catastrophic Impact
Almost Certain			Unable to get return sphere	Photodiode Temp Changes	Cannot perform alignment
High Probability			Short inability to downlink	Structure fails vibration test	Components not manufacturable
Moderate Probability			Main loop below 50Hz		
Low Probability					ADC Failure
Negligible Probability					

Risks V&V

Description — Requirements —

30

Risk Mitigation (Structures & Optics)

Description — Requirements —

Risk	Mitigation Strategy	Outcome
Components cannot be manufactured	Reviewed structure with Prof. Rhode to ensure manufacturability	Likelihood reduced
Structure fails vibration requirement	Variety of boundary conditions considered in SOLIDWORKS vibration simulations	Likelihood reduced
Cannot perform alignment	Reach out to other local companies to use their alignment facilities	Severity greatly reduced, Using Meadowlark alignment facility
Unable to procure return sphere	Use ball bearings and update alignment procedure for convex return instead of concave return	Likelihood greatly reduced

Planning

Risk Mitigation (Electronics & Software)

Description — Requirements —

Risk	Mitigation Strategy	Outcome
Primary ADC Failure	Backup 12 bit ADC built into Teensy microcontroller meets SNR requirement	Severity greatly reduced, 0 fault tolerant → 1 fault tolerant
Photodiode responsivity changes with temperature	Optical bench thermal isolation and optics temperature sensor with 0.043°C resolution	Severity and likelihood reduced
Radiation Errors in Memory	Memory scrubbing, real time error detection and correction (EDAC), program memory rollback	Reduced severity
Payload unable to downlink for more orbits than planned	Implement command to only store data from sunset events, as these likely will have higher fidelity	Reduced severity, Payload will store only the most useful data until it reestablishes downlink

Planning

Risk Matrix (Pre-Mitigation)

	Negligible Impact	Low Impact	Moderate Impact	Extreme Impact	Catastrophic Impact
Almost Certain			Unable to get return sphere	Photodiode Temp Changes	No alignment facility access
High Probability			Short inability to downlink	Structure fails vibration test	Components not manufacturable
Moderate Probability			Main loop below 50Hz		
Low Probability					ADC Failure
Negligible Probability					

Risks V&V

Description — Requirements —

33

Risk Matrix (Post-Mitigation)

	Negligible Impact	Low Impact	Moderate Impact	Extreme Impact	Catastrophic Impact
Almost Certain					
High Probability		Short inability to downlink		\wedge	
Moderate Probability			Photodiode Temp Changes		
Low Probability	Single ADC Failure	Main loop below 50Hz		Structure fails vibration test	
Negligible Probability			Unable to get return sphere	Components not manufacturable	No alignment facility access

Description — Requirements —

Planning

Verification & Validation

Matt Bridges

Requirements Coverage

Test Scope	Verification Procedure Name	Requirements Covered	Verification Type
Component Level	Electronics system test	1.5	Test
	Memory Error Testing	1.3, 2.2	Analysis
	System State Monitoring	1.4, 1.4.1, 1.4.2, 1.4.3	Test
	Collection Window Timing	1.2, 1.1.4	Analysis
	Downlink Data Transfer	2.3	Analysis
Subsystem Level	Data Collection Test	1.1 - 1.1.4, 1.4.1 - 1.4.3, 2.0, 2.1	Test
	Alignment	3.1 - 3.2	Test
	Optics Measurements	3.2, 3.2.1, 3.2.2	Analysis
	Solar Tracking test	3.3	Test
	Solar Attenuation	1, 2, 3	Test
	Regulated light test	1.3 - 1.5, 2.0, 2.1, 3.1	Test
System Level	Structure Measurements	4.1, 4.2	Inspection
	Vibration Test	5.1, 5.1.1, 5.1.2	Test
	Thermal Test	5.2, 5.2.1, 5.2.2	Test
	Vacuum Test	5.3	Test

Description — Requirements

36
Structure: Vibration Test

Subsystem-Level Test

- The structure's lowest natural frequency can be found through a vibration table scan
 - Range of frequencies: 20-2000 Hz [10]
- Will be run with just the structure first, prior to whole system test
 - Ensure no frequencies excite structure or disrupt other subsystem functionality

Vibrational Modes Simulation & Testing

37

Optics: Alignment Analysis

Requirements

Description

Risks

V&V

Electronics: Regulated Light Test

System-Level Test

- Integrated system test using light source with known luminosity and frequency distribution
- Characterize signal to noise ratio through data analysis
 - 'snr' function, Matlab
 - Collecting data through range of incident flux
 - Compare to flight conditions

Description

Requirements

 Looking for plateau in photon count

V&V

Verifies reqs: 1.3-1.5, 2.0, 2.1, 3.1

Risks

Electronics CPE

Planning

Low-Noise Signal Processing

Software: Main Loop Simulation

Subsystem-Level Test

Solar Attenuation Test

Requirements

Description

Risks

V&V

Objectives:

- Develop routine functionality for the NanoSam system
- Obtain measurements at various air-mass (AM) conditions for Langley plot analysis
- AM conditions, ranging from 1 to 3
 - AM = sec(zenith angle)
 - Zenith angle found by NOAA Solar Position Calculator
- Overlapped verification of reqs in level 1.0, 2.0, and 3.0

Planning

41

Project Planning

Jaret Anderson

Organization Chart

Requirements

Description —

Risks

43

Work Breakdown Structure

Work Plan

Cost Plan

Description

Requirements

Risks

- Total Budget of \$5000
- Expected Cost: \$1965
- 2x margin applied to designated funds
- Budget for optics primarily from the cost of alignment tooling and O/A mirror (~\$1500 w/ margin)
- Electronics cost plan does not include parts that could be reused
- \$200 Pilot deposit for access to on-campus tools and facilities has no margin (no margin applied)
- Unallocated funds most likely to be used if required for access to testing facilities

Test Plan

Test Scope	Verification Procedure Name	Equipment	Verification Type
	Electronics system test	Power supply, DMM, scope	Test
Component Level	Memory Error Testing	Software module, unit test function	Analysis
	System State Monitoring	Power supply, electronics, and software	Test
	Collection Window Timing	Software module, unit test function	Analysis
	Downlink Data Transfer	Software module, unit test function, stubbed incoming data	Analysis
Subsystem Level	Data Collection Test	Power supply, payload, test computer	Test
	Alignment	Alignment tooling, optics bench, return sphere, interferometer	Test
	Optics Measurements	Ruler, optics and structure, solar tracker	Analysis
	Solar Tracking test	Solar Tracker	Test
System Level	Solar Attenuation	Solar Tracker & mount, integrated system, laptop, power supply	Test
	Regulated light test	Known light source, integrated system, laptop, power supply	Test
	Structure Measurements	Ruler, payload, scale, calipers	Inspection
	Vibration Test	Vibration table, vibration test stand, structure, stand-in components	Test
	Thermal Test	Oven, integrated payload, pass-through connector, laptop, power supply	Test

Risks V&V

Test Flow

Acknowledgements

Our Customers:

Jim Baer & Jaykob Velasquez Ball Aerospace

Our Peer Evaluators:

Lara Buri & Colin Claytor Team WASP ... and all of our personal friends who should send us a bill for their time doing engineering review **CU Aerospace Department:**

Dr. Allison Anderson The PAB

... and an amazing cohort of professors that answer our endless questions

Our Local Professionals:

Meadowlark Optics Inc Blue Canyon Technologies John Ferguson

Questions

References

[1] QB50:System Requirements and Recommendations. Issue 7, Section 1.6 "Thermal Control" and Section 2.2 "Resonance Survey." Published 13 Feb 2015.

https://www.qb50.eu/index.php/tech-docs/category/QB50_Systems_Requirements_issue_76e8e.pdf?download= 89:qb50-docs

[2] Anderson, B. & Justus, C. & Batts, G. "Guidelines for the Selection of Near-Earth Thermal Environment Parameters for Spacecraft Design" 2001.

[3] Henninger H. John, "Solar Absorptance and Thermal Emittance of Some Common Spacecraft Thermal-Control Coatings" Goddard Space Flight Center, April 1984. <u>https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19840015630.pdf</u>

[4] "SAGE III on ISS", Wikipedia, Last Edited 10 September 2020. https://en.wikipedia.org/wiki/SAGE_III_on_ISS#/media/File:SAGE_III_Instrument.jpg

[5] Mason, J. & Woods, T. "Miniature X-Ray Solar Spectrometer (MinXSS) – A Science-Oriented, University 3U CubeSat."

https://arxiv.org/pdf/1508.05354.pdf

[6] Anderson, J. & Et. Al "NanoSAM II Preliminary Design Report". Published 13 October 2020.

References

[7] "3U CubeSat Structure" ISIS Space, https://www.isispace.nl/product/3-unit-cubesat-structure/

[8] "PC/104 Specification" PC/104 Embedded Consortium. Version 2.6, October 13, 2008 https://pc104.org/wp-content/uploads/2015/02/PC104_Spec_v2_6.pdf

[9] "2000 ASTM Standard Extraterrestrial Spectrum Reference E-490-00." National Renewable Energy Laboratory. https://www.nrel.gov/grid/solar-resource/spectra-astm-e490.html

[10] "General Environmental Verification Standard: GSFC-STD-7000", Office of the NASA Chief Engineer, NTSS Version 7.0, 30 Sep 2015, updated 29 March 2019. <u>https://standards.nasa.gov/standard/gsfc/gsfc-std-7000</u>

[11] "Kim, Sung-Hwa & Hwangbo, Chang-Kwon "Temperature Dependence of Transmission Center Wavelength of Narrow Bandpass Filters Prepared by Plasma Ion-Assisted Deposition." Journal of the Korean Physical Society. Vol. 45, No. 1, July 2004. <u>https://inis.iaea.org/search/search.aspx?orig_q=RN:41100734</u>

[12] McCormick, M. P. & Et. Al "Satellite Studies of the Stratospheric Aerosol." Bulletin American Meteorological Society. Vol. 60, No. 9, September 1979.

Backup Slides

Table of Contents

Risks	54 - 59
Optics	60 - 64
Electronics	65 - 97
Structures	98 - 115
Software	116 - 120
Management	121 - 133
Testing	134 - 146

Backup Slides: Risk

Electronics Risks

Description —

Requirements -----

Risk	Mitigation
Voltage regulator noise	Low noise components, voltage reference for ADC, recommended routing patterns
Pin overvoltages	TVS diode on heating resistor, zener diode on ADC input, voltage regulators
ADC failure	Backup 12 bit ADC on Teensy meets SNR requirements
ESD component destruction	Test plan recommendations, ESD safety in test procedures
Signal integrity	Signal-ground connector layout, low frequency signals, off-board wire shielding, robust SPI communication design

Risks V&V

Electronics Risks

Risk	Mitigation
ESD damage or component issues go undetected	Abundant test points to check all input/outputs to each IC
Photodiode saturation	Reverse bias voltage applied on pin >3.3V
Photodiode responsivity changes	Software correction via high sensitivity optical temp sensor IC
ADC Dynamic Range	Feedback resistor sized for maximum expected output current with margin of error
Radiation triggers Teensy 4.0 latch up	External watchdog monitoring circuit and backup watchdog implementation in software (using microprocessor built in)

Requirements

Planning

56

Optics Risks

Description —

Risk	Mitigation
No access to ball alignment facility	Approach other interferometer owners to ask for access Alignment tooling design (maybe)
MTF and Alignment Precision	Complete Zemax tolerance model
Center Wavelength of Filter change due to Temperature	Thermally isolate the bandpass filter
Vertical Resolution	Size pinhole to correspond to 1 km vertical resolution
Lack of Return Sphere for Alignment	Use ball bearings and update alignment procedure for convex return instead of concave return

Risks V&V

Requirements -----

Structures Risks

Requirements

Risk	Mitigation
Components cannot be manufactured or cannot be assembled	Discussions with Matt Rhode to ensure manufacturability
Structure fails vibrational requirements or is damaged during testing	Numerous boundary conditions considered in SOLIDWORKS, full suite of simulations conducted
Structure fails thermal requirements	Thermal isolation of optic and implementation of heater-temperature feedback loop
Interfacing with Optics subteam	Frequent reviews with our customer with industry optics experience to maximize optic performance
Interfacing with EPS subteam	Reviews with Jashan to ensure electronics would fit and could be easily accessed if needed.

Description —

Risks V&V

Software Risks

Description —

Requirements -----

Risk	Mitigation
Overhead infringes on 50Hz sample rate	Spread operations across multiple timing segments
CMOS latchup	Multiple external watchdogs to trigger reset
Radiation errors in memory	Memory scrubbing, real time EDAC, program rollback
Signal interference	Hamming codes and redundant SPI and USB communication schemes
Prolonged downlink interval	Adjustable sample rate to conserve memory

Risks V&V

Backup Slides: Optics

Optics: Filter CWL Changes Due to Temperature

Optics: Uniform Solar Disk Assumption Correction Factor

Optics: System Transmission Factor

 $F_{sys} = F_{bandpass}F_{longpass}F_{OAP}$

Filter transmission factors obtained from manufacturer (ThorLabs)

Bandpass:

Transmission for FELH1000 Longwave pass filter

Optics: Mirror Reflectivity/Transmission Factor

Backup Slides: Electronics

Electronics: Key Values

Analog Front End Characteristics	Value	Units	Condition
Photodiode Current	0.004095	A	Expected Max
ADC Voltage	3.3	V	Expected
ADC # Bits	16	bits	Datasheet
Least Significant Bit (LSB)	0.00005035400391	V	Expected
Feedback Resistor	765.5677656	Ohm	Expected
Digital Supply Voltage	3.3	V	Expected
Analog Supply Voltage	5	V	Expected
Signal Frequency	1.04E+02	Hz	Expected
Feedback Capacitor	8.00E-06	F	Expected

Optical Characteristcs	Value	Units	Condition
Incident Power	0.0091	W	Maximum
Responsivity (Datasheet)	0.45	A/W	298 K
Responsivity (Expected)	0.45	A/W	273 K
90% ADC Range	3.135	V	

Storage Requirements	Value	Units	Condition
ADC Data Collection Rate	833	samples / s	Datasheet
Science Collection Period	240	s	Via orbital calculation
Science Data Storage	95961600	bits	Expected Max
Housekeeping Analog Pins	8	inputs	Maximum
Housekeeping Collection Rate	10	samples / s	Up to Software
Orbital Period	5676.808417	s	Via orbital calculation
Microcontroller ADC Bits	12	bits	Datasheet
Housekeeping Data Storage	5449736.08	bits	Expected Max
Total Bits Required	101411336.1	bits	Expected Max
Total Bits Required	101.4113361	Mb	Expected Max
External Flash Storage	256	Mb	Datasheet
Teensy Flash Storage	15.872	Mb	Datasheet
Storage Used %	39.61380316	%	Expected Max

(1/2) Board Analog

(2/2) Board Analog

OSHPark CAM Job Render [Analog]

OSHPark CAM Job Render [Digital]

Electronics: Extended Bill of Materials

Part	Value	Device	Package	Size (mm ²)	DK Part #	Cost	Temperature Rating
U\$2	TEENSY4.0	TEENSY4.0	TEENSY4.0	814.1	1568-DEV-16997-ND	24.38	-40°C ~ 85°C
U\$3	AD8671	AD8671	SO8	31	AD8671ARMZ-ND	2.89	-40°C ~ 125°C
U\$4	LT6105	LT6105	MSOP8	4.7925	LT6105HDCB#TRMPBFTR-ND	3.46	-40°C ~ 125°C
U\$5	LTC2470	LTC2470	MSOP12	10.5	LTC2470IMS#TRPBFTR-ND	5.01	-40°C ~ 85°C
U\$12	LT8610A	LT8610A	MSOP16	19.79	LT8610AEMSE#TRPBFTR-ND	9.5	-40°C ~ 125°C
U\$16	MT25QL128ABA1ESE	MT25QL128ABA1ESE	SO-08M	48	557-1982-2-ND	2.29	-40°C ~ 85°C
U\$17	MT25QL128ABA1ESE	MT25QL128ABA1ESE	SO-08M	48	557-1982-2-ND	2.29	-40°C ~ 85°C
U\$19	THERMISTOR	THERMISTOR	M0805	2.58064	BC3395CT-ND	1.08	-40°C ~ 150°C
U\$26	LTC2470	LTC2470	MSOP12	10.5	LTC2470IMS#TRPBFTR-ND	5.01	-40°C ~ 85°C
U\$30	LT6105	LT6105	MSOP8	4.7925	LT6105HDCB#TRMPBFTR-ND	3.46	-40°C ~ 125°C
U\$33	LT6654-3.3	LT6654-3.3	SOT23-6L	8.12	LT6654BMPS6-5#TRMPBFTR-ND	9.76	-55°C ~ 125°C
U1	LTC3260EMSEPBF	LTC3260EMSEPBF	MSOP-16_MSE	16	LTC3260EMSE#PBF	8.47	-40°C ~ 125°C
U2	LMV324	LMV324	SO14	9.15	LMV324QPW-ND	0.9	-40°C ~ 125°C

Total Size (mm^2)	Total Cost (\$)	# Components	Clearence (mm^2)	Traces (mm^2)	Board Cost
5060.264744	517	129	14.5125	655.32	65

Temperature Effects on Components

Device	Temperature Effects (over -20C to 50C)
Transimpedance Amplifier	Output voltage high and low remain within our necessary bounds, supply current delta around 0.5mA, and slight increase in input offset voltage with temperature, overall negligible.
ADC	Gain error and offset error change by ~6-10 LSB, unavoidable but quite small. Calibrating for median temperature will help. Negligible change in conversion time.
Voltage Reference	~0.1mV change maximum, will not affect a significant amount of LSB.
5V Bipolar Regulator	~100mV change maximum, could introduce AD8671 op-amp noise, but we use decoupling capacitors. Does not veer outside of required operating range.
3.3V Linear Regulator	~5mV change in voltage output, not enough to affect digital component operation
Current Sense Monitors	0.01% gain error change, no concern

Reference voltage for ADC

Electronics: Voltage Regulator Output Noise

1266-520

1µs/DIV

V_{IN} = 15V V_{LDO}⁺ = 12V V_{LDO}⁻ = -12V

5V Bipolar Regulator					
Output Voltage Noise	,	2 bins noise			
+ Decoupling capacite	ors on transimp	edance amplifier Vc	c		
3.3V Linear Regulator				LDO Rejection of V _{OUT}	Ripple
Table 1. Output Voltage Ripple vs Output LT8610AB when $V_{IN} = 12V$, $V_{OUT} = 3.3V$		L1 (+3V3/1.68	VLD0* 10mV/DIV AC-COUPLED		
OUTPUT CAPACITANCE	OUTPUT RIPPLE	8.7uH C8 C9 47uF 47uF	VLD0 ⁻ 10mV/DIV		
47µF	40mV		AC-COUPLED		
47µF ×2	20mV	DGND	Vout 10mV/DIV	han	~~
47μF ×4	10mV	DGND	AC-COUPLED		

Electronics: Recommended Voltage Regulator Routing

.... GND ... CFLY VIN LDO*

Analog Voltage Regulator

Vour LD0⁻

GND

Figure 5. Recommended Layout

3268 F05

Digital Voltage Regulator

Electronics: Microcontroller Overvoltage

Risks

Solution

No pin should receive over 3.3V (with a 0.3V tolerance). Otherwise the Teensy will be destroyed.

3.3V Voltage Regulator controls Vcc input

3.3V Zener Diode Regulates backup ADC Trace

Primary ADC Output limited by 3.3V

Other pin inputs limited by 3.3V, controlled by 3.3V voltage regulator

Electronics: Signal Conditioning or ADC Failure

Risks

Solution

Op-amp voltage input out of range

VCC and GND pins reversed

Exceed common mode input range

Voltage Regulator controls op-amp voltages

Robust test procedures and external I/O labels

Photodiode oversaturation protected by bias voltage

Note: A second transimpedance amplifier increases complexity and adds another failure point, see backup slide for more details. We will use a MOSFET controlled backup trace from the first transimpedance amplifier that goes directly to a microcontroller analog input for ADC redundancy!

Electronics: Signal Conditioning Backup

Add second transimpedance amplifier and a programmable gain resistor.

Adds complexity and failure point in the SPI connection of the controllable gain resistor, and another MOSFET.

Thus, will not be used - however, thought was given to a secondary design.

Electronics: ESD Handling

Part Element	Part Type	ESD Susceptibility (Volts)	Failure Mechanism	<u>Failure</u> Indicator
MOS Structures	CMOS	250-3000	Dielectric Breakdown	Short Circuit
Semiconductor Junctions	MOSFET, Schottky Diodes	100-200, 300- 2500	Thermal Breakdown	Short Circuit
Film Resistors	Thin & Thick	300-3000	Dielectric Breakdown	Resistance Shift

MOSFET, ICs, and power regulator inventory and handling

Board manufacturing Board testing Board integration

Structure handling post integration

ESD wristbands, ESD jacket

ESD wristbands, ESD jacket, ESD mat performed in standard ESD certified lab, extreme certification not required

ESD jacket or grounded structure

https://nepp.nasa.gov/DocUploads/9220611A-6EAA-426D-A60A74EF7A16E40E/ESDWhitePaper.pdf https://lmse.larc.nasa.gov/admin/public_docs/LPR_8739-21C_Final.pdf

Electronics: Board to Board Signal Integrity

Risk Mitigation Strategies

Routed Signals

Power rating up to 398 VDC, 3.4A per pin

Signal-Ground-Signal-Ground routing

Coupling capacitors (0.1uF) on primary signal

Bus voltage line (DC) Primary ADC signal (833 Hz) Backup ADC signal (DC) Thermistor (DC) Regulator current (DC) Regulator voltage (DC)

With low frequency and DC signals, not worried about signal loses due to crosstalk, propagation delay, return loss, insertion loss, or rise time degradation.

http://suddendocs.samtec.com/literature/samtec_si_handbook.pdf

Electronics: Test Points

Test Point	Description	Expected Value	Checks?	
1	Pre Feedback Resistor	Depends on light source	Photodiode working	
2	Post Transimpedance Amplifier	Depends on light source	Transimpedance amp working	
3	ADC Vcc	3.3V	Voltage reference working	
4	ADC Ref-	GND	ADC reference good	
5	Analog Thermistor Voltage Divider Output	Depends on temperature	Thermistor good	
6	Analog Thermistor Sho Voltage Buffer Output as		Voltage follower good	
7	5V Regulator Positive Output	+5V	Bipolar regulator good	
8	5V Regulator Negative Output	-5V	Bipolar regulator good	
9 5V Regulator EPAD Ground		GND	Bipolar regulator good	
10	Voltage Bus Input	System Vin	Voltage source good	
11 Current Sense Output		Backsolve for Vin	Current sense monitor good	

DIGITAL BOARD TEST POINTS

Test Point	Description	Expected Value	Checks?	
1	Microcontroller Vin	3.3V	Microcontroller getting required power, also checks MOSFET not busted	
2	Watchdog RST Signal	3.3V	lf watchdog triggers, RST goes high	
3	Watchdog /ST Signal	3.3V, 50ns width square	Microcontroller outputs watchdog signal	
4	Flash 1 Vin (U\$1)	3.3V	Flash 1 power	
5	Flash 2 Vin (U\$2)	3.3V	Flash 2 power	
6	Digital Thermistor Voltage Divider Output	Depends on temperature	Thermistor good	
7	Digital Thermistor Voltage Buffer Output		Voltage follower good	
8 3.3V Regulator Output		3.3V	Linear regulator good	
9	3.3V Regulator GND	GND	Linear regulator good	
10	3.3V PG Pin	High (~3.3V)	Linear regulator good	
11	Voltage Bus Input	System Vin	Voltage source good	
12	Current Sense Output	Backsolve for Vin	Current sense monitor good	
13	Optical Bench Thermistor	Depends on temperature	Thermistor good	
14	Optical Thermistor Voltage Buffer Output	Same as T13	Voltage follower good	
15	Resistor Heater Vin	~System Vin (minus TVS diode drop)	Use to check heating resistor voltage drop	
16	Resistor Heater GND	~GND (+MOSFET Drop)	Use to check heating resistor voltage drop	

Electronics: TVS Diode

For resistor heater

Max voltage applied before TVS activates

Max possible voltage across DUT w/ TVS in place

TVS Diode prevents voltage spikes across this resistor heater which could result in surpassing the power limit and destroying the heating resistor! Voltage where TVS begins to conduct and protects the DUT

Maximum current TVS can withstand

Electronics: Photodiode Saturation

The photodiode output will saturate when the output voltage approaches the reverse bias voltage on the photodiode.

Our reverse bias voltage should be greater than the maximum output voltage, which is 3.3V.

Electronics: Photodiode Temperature Effects

"Optical Detectors", Wang, Wei-Chih, National Tsing Hua University.

~3% deviation for 5K change, leads to 0.0027 A/W per K change in responsivity. This is equivalent to a 0.0198 V/K response in our output voltage (with 5121 ohm feedback resistor).

This is 393 bins / K (0.6% error in voltage read out per kelvin).

We will size the feedback resistor for the estimated responsivity at the expected temperature of the photodiode during the data collection window.

Error from temperature change will be measured by a thermistor and fixed in software, because it is a linear error.

7.5 Accuracy Characteristics

These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in Table 3.

PARAMETER	CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
111	40°C to 150°C; V _{DD} = 2.2 V to 5.5 V	-2.7	±0.4	2.7	°C
	0°C to 40°C; V _{DD} = 2.4 V to 5.5 V	-2.7	±0.7	2.7	°C
Temperature accuracy ⁽³⁾	0°C to 70°C; V _{DD} = 3.0 V to 5.5 V		±0.3		°C
	–50°C to 0°C; V _{DD} = 3.0 V to 5.5 V	-2.7	±0.7	2.7	°C
	-50°C to 0°C; V _{DD} = 3.6 V to 5.5 V		±0.25		°C

7.6	Electrical	Characteristics
	Livouiroui	

Unless otherwise noted, these specifications apply for +V_{DD} = 2.2 V to 5.5 V. MIN and MAX limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} , unless otherwise noted; typical values apply for $T_A = T_J = 25^{\circ}$ C.

PARAMETER	TEST CONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
Average sensor gain (output transfer function slope)	-30°C and 90°C used to calculate average sensor gain		-10.9		mV/°C

TEMP (°C)	V _{OUT} (mV)								
-50	2616	-10	2207	30	1777	70	1335	110	883
-49	2607	-9	2197	31	1766	71	1324	111	872
-48	2598	-8	2186	32	1756	72	1313	112	860
-47	2589	-7	2175	33	1745	73	1301	113	849
-46	2580	-6	2164	34	1734	74	1290	114	837
-45	2571	-5	2154	35	1723	75	1279	115	826
-44	2562	-4	2143	36	1712	76	1268	116	814
-43	2553	-3	2132	37	1701	77	1257	117	803
-42	2543	-2	2122	38	1690	78	1245	118	791
-41	2533	-1	2111	39	1679	79	1234	119	780
-40	2522	0	2100	40	1668	80	1223	120	769
-39	2512	1	2089	41	1657	81	1212	121	757
-38	2501	2	2079	42	1646	82	1201	122	745
-37	2491	3	2068	43	1635	83	1189	123	734

Electronics: Optics Bench Temperature Software Correction

Electronics: ADC Saturation

Maximum temperature (during data collection): Responsivity at maximum temperature: Maximum incident power:

Maximum output current:

Feedback resistor for 3.3V

30 deg C 0.405 A/W 0.006 W

0.00247 A

1268 Ohms

We also use a 3.3V zener diode on the ADC input to prevent overvoltage. The ADC COMP can only accept 3V to 3.6V (at 3.3V Vcc).

Electronics: SPI Bus Connections

https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html

Electronics: SPI Bus Pull Up Resistors

Pull up resistors on the chip select pins ensure that the CS pin is high, thus the MISO/MOSI lines will disengage.

This makes sure a line is only transmitting when absolutely driven low by the microcontroller, reducing potential cross talk.

This can also be corrected in software, but it provides an extra layer of redundancy at little cost.

Electronics: SPI Bus Reflection Reduction

https://www.diodes.com/assets/App-Note-Files/AB023.pdf

http://www.the-signal-and-power-integrity-institute.com/files/Andrew_Norte_Source_Termination_Resistor_Location_2.pdf

Electronics: Watchdog Timer Circuit

TD pin set to VCC to make watchdog timer 1.2 seconds.

Digital output on microcontroller sends 50ns pulse every 0.5 seconds to /ST pin.

RST pin asserts to switch off the MOSFET if timer trips, which breaks the microcontroller power input for 250ms

Pull down resistor used to make sure no capacitance build up on MOSFET.

Electronics: Watchdog Backup Considerations

The Teensy 4.0 uses a IMXRT1060 microprocessor which has three internal watchdogs and an external watchdog monitor (EWM).

Thus, a watchdog can easily be implemented in the software. With two or more watchdogs, we drastically improve our redundancy.

This involves editing microprocessor memory blocks, which is pretty involved. Luckily, some genius EE folks over at the Teensy forum provided me with information and sample code for each of the four IMXRT1060 watchdogs.

https://forum.pjrc.com/threads/64075-Questions-on-Watchdog-IC-Interface-to-reset-Teensy-4-0?p=257442#post257442 https://github.com/tonton81/WDT_T4

Electronics: Resistor Heating PWM Switching High Frequency

High frequency signals switching the current through the heating resistor can produce antenna like noise effects, so shielding the off-board wires is a must.

An alternate solution is to place the MOSFET on the optical bench, to have the low frequency voltage line being the one sent through off-board wires. This increases manufacturing complexity and will only be used as a backup.

Electronics - LTspice Schematic

Output Voltage = -3.13 V

Voltage across Feedback Resistor = 3.13 V

Electronics - Ltspice - Output Voltage vs Feedback Resistance

As feedback resistance is increased to about 900 Ohms, the output voltage reaches a limit of about -3.9V

MinXSS Board Heat Dissipation

- Miniature X-Ray Solar Spectrometer (MinXSS) A Science-Oriented, University 3U CubeSat
 - Similar power requirements relied on conduction to dissipate heat into the cubesat bus and radiate into space
- https://arxiv.org/pdf/1508.05354.pdf

Backup Slides: Structures

Thermal Isolation of the Optics Bench

 Introduction of structural fiberglass on either side of the optics bench (S-Glass)

S-Glass Properties	
Density	2.49 g/cc
Thermal Conductivity	1.28 W/m-K
Specific Heat	738 J/kg-K

- Input into SolidWorks in order to account radiation from the Earth
 - Neither SolidWorks or ANSYS has this ability built in
- Still uses **area** factor analysis
- Modeled as surface sources alongside the heater and the EPS board power dissipation

- Trend in Solidworks matches MATLAB transient model
 - Expected since MATLAB power data was used to generate results
- Expected higher temperature of photodiode block due to thermal isolation and internal heater
 - Smoother inflection and critical points
- Filter temperature variation is large due to being connected to the external surface
 - No thermal isolation to environment
 - Less energy required to change temperature due to small mass

Data Window	Max ΔT (K)	Time (s)
Sunset	0.28	192.6
Sunrise	0.70	192.6

- Calculated for β = 60° (close to maximum data window)
- Average values used for albedo, IR, and solar radiation
- 0.7P_{i.max} used in model alongside a 3 W heater
- Black anodize exterior coating
- No longer lumped system analysis (done through Solidworks + MatLab modeling)
 - Threads and screws removed along with small holes

Temperature Change of Filter

Data Window	Max ΔT (K)	Time (s)
Sunset	0.70	192.6
Sunrise	2.80	192.6

- Larger temperature changes as expected for external surfaces
- Smaller temperature change during sunset window
 - loss of energy from albedo decreases the slope of curve during sunset
 - Sudden increase in energy from sun sharply increases the slope of the curve during sunrise

Temperature Change of Filter

105

Thermal Model Diagram

Thermal Model Details

Key Assumptions:

- Bodies other than the Earth/Sun don't produce significant incident radiation
- Kirchoff's law ($\epsilon_{\lambda}(T) = \alpha_{\lambda}(T)$)
- Satellite surfaces are gray, diffuse, surfaces
- Radiation to deep space (0 K)

Key Equations:

$$T_{sys,eq} = \left[\frac{\dot{Q}_{in,sun} + \dot{Q}_{in,A} + \dot{Q}_{in,IR} + P_i}{2\sigma\epsilon(2A_s + A_p)}\right]^{(1/4)}$$
$$\dot{Q}_{tot} = \dot{Q}_{in,A} + \dot{Q}_{in,IR} + \dot{Q}_{in,sun} + P_i - \dot{Q}_{out}$$

$$T_i = \frac{\dot{Q}_{tot}\Delta t}{mc_p} + T_{i-1}$$

Vibrational Study - Vibe Test Simulation

Risks

Commercial CubeSat Interface Mount - PC104 Specs [8]

Requirements

Description

Lowest Frequency: 1197 Hz

/&\

No resonant frequencies below 100Hz requirement

Planning

108
Structural Study - Simplified (Only Ribs)

Only the rib components are analyzed here, with a single fixed corner in Solidworks

Mode Number	Frequency (Hz)
1	189
2	330
3	505
4	558
5	786

Mode 1

- No harmonic frequencies below 100Hz
- Modes are driven by the ribs vibrating apart at low frequency
 - Adding material between these ribs should stiffen these modes (i.e. raise frequency)

Structural Study – Simplified (Ribs and Walls)

Mode Number	Frequency (Hz)
1	483
2	634
3	636
4	717
5	748
6	834
7	926

Mode 1

- No harmonic frequencies below 100Hz
- Modes are driven primarily by vibrations in the ribs coupled with vibrations in the walls
 - Adding more material (i.e. the optical bench) will further stiffen the connections between ribs, damping these modes
- Global penetration allowed
 - Increasing number of screws to rigidly attach walls along ribs would make a bonded contact make more sense

Structure: Vibration Test

System-Level Test

- Whole System Test
- Includes walls and sensitive optical components
 - Walls required to protect optical components
 - Requires that the optical components are fixed (staked)

Structure: Vibration Test (FEM)

- Lowest Frequency: 1190 Hz
 - Bonded Contacts may not fully capture the ways the walls are free to move, inform these modes from the simplified ribs/walls model

System-Level Test

Structural Study - G Loading (Per Axis)

Requirement from (QB50-SYS-2.1.1): 13 g, all XYZ directions for Qualification

Y axis max stress: **6.94 MPa** X axis max stress: **3.37 MPa** Z axis max stress: **6.95 MPa**

Material Stress Limits (Tensile, Yield):

- AI 6061-T6: 276 MPa
- 18-8 Stainless Steel: 215 MPa
- S-Glass Fiber: >4500 MPa (Ultimate)

Numbers gathered from Matweb

Vibrational Study - Boundary Conditions

Fixed Corner + Roller Top Rib

Fixed Top Left Rib + Roller Top Right Rib

Risks

Fixed Top and Bottom Rib

Description

Fixed Top Rib + Roller Bottom Rib

Requirements

Vibrational Study – Results

Boundary Condition	Lowest Frequency
Roller Top Rib with Fixed Corner	645 Hz
Fixed Top Rib and Bottom Rib	658 Hz
Fixed Top Rib and Roller Bottom Rib	638 Hz
Fixed Top Rib and Roller Top Rib	642 Hz
Fixed Back of Optics Bench	507 Hz

Risks

Requirements

Description

V&V

No resonant frequencies below 100Hz requirement

Subject to slight changes due to Cubesat mounting hardware added to model, trend expected to hold

Backup Slides: Software

Error Detection and Correction

Downlink Memory Usage

Data Parameters:

16 bit ADC output + 16 bit metadata(72,64) Hamming code240 second maximum window duration30-31 windows per day

Sample Rate	Consecutive Windows To Fill Memory
833Hz	36 (1.2 days)
208Hz	143 (4.7 days)
50Hz	593 (19.4 days)

EDAC Simulation

Model Details:

15.872 Mb total program memory Assumes 10 errors / Mbyte / day Assumes 2% of errors are multiple bit errors Assumes EDAC modules use 10% of program memory Memory is scrubbed with a (72,64) SEC-DED EDAC scheme Dual redundant cross-checking EDAC modules

Scrubbing	Reliability for a Period of One Day			
Interval	Software EDAC		Hardwa	re EDAC
interval	u = 5.52 x 10 ⁻¹⁹	u = 5.52 x 10 ⁻¹⁸	u = 5.52 x 10 ⁻¹⁹	u = 5.52 x 10 ⁻¹⁸
10 minutes	0.935506	0.513345	0.999999	0.999904
20 minutes	0.935504	0.513274	0.999998	0.999808
30 minutes	0.935503	0.513202	0.999997	0.999712
40 minutes	0.935502	0.513130	0.999996	0.999617
1 day	0.935319	0.503198	0.999862	0.986297

Data From ARGOS Project

Shirvani, Philip & Saxena, Nirmal. "Software-implemented EDAC protection against SEUs" IEEE Transactions on Reliability 49(3), October 2000 <u>See Here</u>

Backup Slides: Management

WBS: Software

Description — Requirements

V&V

Risks

124

WBS: Optics

WBS: Structures

Risks

V&V

Description — Requirements

WBS: Electronics

Description — Requirements

Risks

V&V

127

WP: Management

WP: Optics

WP: Optics Detailed Example

WP: Structures

WP: Electronics

132

WP: Software

Backup Slides: Testing

Solar Tracking & Langley Plot Test

Solar Tracking Test:

- Solar tracker purchased by NanoSAM 1
- Done prior to any solar attenuation test
- Ensure that our solar tracker meets the required 1 arcmin tracking accuracy

Langley Plot:

Description

- Used to verify the accuracy of the overall irradiance measurement at the desired wavelength (1020 nm)
- Used to determine the gain of the system

Requirements

 Data taken from CU Boulder skywatch observatory

Solar Attenuation Test, continued

Description — Requirements —

Pre-test:	Measurements:	Analysis:
 Use <u>NOAA Solar Position</u> <u>Calculator</u> to characterize the zenith angle and air mass for test window Monitor weather forecast for optimal conditions 	 Irradiance Across desired range of AM Simultaneous recording CU Skywatch irradiance measurements 	 Verify entire section 1 of requirements Create a Langley plot, and extrapolate expected irradiance at 0 air-mass Compare value to expected flight conditions, quantify error in extrapolation Skywatch data will provide means of error analysis

Risks V&V

Regulated light test, continued

Pre-test:	Measurements:	Analysis:
 Estimate flux at system entry Light source of known luminosity Flux will be proportional to inverse square of distances Estimate amount of light filtered Overlay filter frequency response and light source frequency range 	 Irradiance At three separate distances Multiple trials 	 Photodiode saturation Looking for a plateau in photon count Signal to noise ratio Compare to design margin Efficiency of optics Compare pre-test predictions to data

Risks V&V

Description — Requirements —

Software: System State Monitoring

Goal: Confirm system housekeeping data is reporting correctly

Set system to read off system housekeeping data

Verify temperature, power, storage capacity through model and external measurements

Test in different environments (outside, inside)

Description

Requirements

Risks

Software: Collection Timing Test

<u>Goal:</u> Confirm that software collect irradiance data during required window

Structures : Thermal Test

Requirements

Risks

<u>**Goal:**</u> Verify heater functionality and overall system functionality over expected temperature range

Description

Structures : Vacuum Test

Requirements

<u>**Goal:</u>** Verify heater functionality and overall system functionality over expected temperature range</u>

Run the system in vacuum chamber with atmospheric conditions for 1 minute

Keep system running with vacuum chamber activated for 1 minute

Continue running back up to atmospheric conditions and keep running for 1 minute

Description

Risks

Off

On

V&V

Off

Optics: Alignment Test

Goal: Sufficiently align optical system

Steps:

- Align ball bearing to optimal optical axis by driving interferometer-measured zernike coefficients to zero
- 2. Align sighting tabs
- 3. Align diode block, again by driving zernike coefficients to zero
- 4. Measure MTF
- 5. Align the diode block to pinhole
 - a. Correct defocus based on false interferogram
 - Adjust shims until light passes unobstructed through the pinhole (corrects for vertical displacement)
- 6. Tighten diode block into final aligned configuration

Tracking Accuracy Test

Goal: Ensure that the purchased star tracker can meet the 1 arc-min (.3 mRad) tracking accuracy requirement

Steps:

- 1. Pick a day when it is sunny outside (no clouds)
- 2. Align star tracker to the sun (following instructions provided in manual)
- 3. Use fishing wire over the scope to project a set of crosshairs and the view of the sun through the scope onto a piece of cardstock
- 4. Over the course of an hour, as the star tracker tracks the sun, use a cell phone camera to take pictures of the projected crosshairs and sun image every five minutes
- 5. Data process by pixel resolution to determine the accuracy of the star tracker

Data Collection/Electronic System Test Setup

Risks

V&V

Requirements

Description

Objectives:

- Verify baseline requirements, primarily in data conditioning
- Check electronic components' functionality

Baseline Data Collection Test

Goal: Confirm system provides data at the required specifications Overall: Allow shining of a light source (arbitrary irradiance) onto the photodiode and measure outputs

- 1. Verify payload is connected as necessary and is connected to an external computer
- 2. Verify the ADC collects at 10 bits or greater.
- 3. Run the system for 1 minute, varying how much light goes into the system.
 - a. Specific values are not necessary for this test
- 4. Complete the test and obtain test data
 - a. Test data obtained means requirements 1.0, 1.1, 2.0 are verified
- 5. Compute sampling rate by dividing the samples taken by the test duration in seconds.
 - a. Should be \sim 50 Hz
- 6. Determine storage capacity taken up by the data from the housekeeping data
 - a. Extrapolate storage taken through 1 downlink period.

Electronics System Test

Goal: Determine the electronics power draw, and ensure proper component functionality

- 1. Transfer software to the ADC
- 2. With both electronics boards separated, connect the analog board to a 12V power source and ground
- 3. Measure voltage across board
- 4. Connect the digital and analog boards and connect them to 12V power and ground
- 5. Measure voltage across the two boards
- 6. Plug in the usb connection and connect to 12V power and ground
- 7. Measure voltage across
 - a. If the voltages are not what was expected, test values at test points to find error
- 8. While connected to power, measure the voltage drop across the voltage regulator
- 9. Obtain voltage regulator current from the microcontroller
- 10. The power usage is the current times the voltage
 - a. This is the maximum source of power draw of the system, total power would need values across more components