

Actuated Electromagnetic System for Ice Removal

Test Readiness Review March 2, 2016

Customers Ellis Langford, Ed Wen		Advisor Joe Tanner
Kelly Allred	Jacquie Godina	Andrew Moorman
Jonathan Eble	Andre Litinsky	Libby Thomas
Nicole Ela	Runnan Lou	Colin Zohoori

3/2/16

University of Colorado Boulder Aerospace Engineering Sciences

Overview

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Cage

Full Wing

Deflection

Full Wing

Wind Cage

Flat Plate

Deflection

Ballistic

Pendulum

2

Budget

Problem Statement & Objectives

Design, build, and test a small-scale prototype of a deicing system for the Orion UAV.

Functional Requirements

Schedule

and the state of t

Orion UAV

- FR.1 The full-scale system shall be integrable with the Orion UAV.
- FR.2 The prototype shall *remove ice*.

Ballistic

Pendulum

FR.3 - The full-scale system shall use **less than 4kW-hr to deice** the wing section.

Flat Plate

Deflection

Flat Plate

Wind Caae

Full Winc

Deflection

Budget

Full Wind

Wind Caae

Design Overview

Deicing Mechanism = Baseline design used for all levels of success

Flat Plate

Deflection

Ballistic

Pendulum

Schedule

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Caae

Full Wing

Deflection

Full Wing

Wind Cage

Functional Block Diagram

Concept of Operations

Purpose of Level 3:

- Integration into wing structure-like Orion UAV
- Testing in flight-like wing section and conditions

Levels of Success

Deicing Mechanism = Baseline design used for all levels of success

Level of Success	Description		Corresponding Tests	Level of Success Achieved when
1	Deicing mechanism integrated with ballistic pendulum	Ballistic Pendulum	Ballistic Pendulum Tests	Solenoid Force Model verified
2	Deicing mechanism integrated with carbon fiber flat plate	Flat Plate	 Deflection tests Deicing tests in simulated flight conditions 	ANSYS Model verified. Ice broken from flat plate
3	Deicing mechanism integrated with carbon fiber full wing section	Full Wing Section	 Deflection tests Deicing tests in simulated flight conditions 	Ice broken from wing section in simulated flight conditions
OverviewScheduleBallistic PendulumFlat Plate DeflectionFlat Plate Wind CageFull Wing DeflectionFull Wing Wind CageBudget3/2/16University of Colorado Boulder Aerospace Engineering Sciences7				

Critical Project Elements

Schedule

3/2/16

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Cage

Full Wing

Deflection

Flat Plate

Deflection

Ballistic

Pendulum

Schedule

Budget

Full Wing

Wind Cage

Overall Schedule

Aerosp

Test Readiness

Overview

3/2/16

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Cage

Full Wing

Deflection

Flat Plate

Deflection

Ballistic

Pendulum

Budget

Full Wing

Wind Cage

Test Readiness Roadmap

Test 1 – Ballistic Pendulum Test (Complete by: 2/26)

→ Validate solenoid force model

Test 2 – Flat Plate Deflection Test (Complete by: 3/13)

→ Validate flat plate ANSYS model by measuring deflection of flat plate

Test 3 – Flat Plate Wind Cage Ice Test (Complete by: 3/13)

→ Verify ice in ANSYS model by breaking ice off flat plate

Test 4 – Full Wing Section Deflection Test (Complete by: 4/9)

Ballistic

Pendulum

→ Validate wing section ANSYS model by measuring deflection of wing section

Test 5 - Full Wing Section Wind Cage Ice Test (Complete by: 4/9)

→ Break ice off wing section, prove overall functionality

Flat Plate

Deflection

3/2/16

Overview

Schedule

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Caae

Eull Winc

Deflection

Full Wina

Wind Caae

Ballistic Pendulum Overview

Purpose

- Verify solenoid force model
- Validate design

Requirements Verified

- DR.2.1 The deicing mechanism shall be capable of **removing 3/8** in thick ice on test section
- DR.3.1 The deicing mechanism shall operate on an incoming 28
 V DC voltage line.
- DR.3.2 The full-span system **instantaneous power draw shall be at most 2 kW**.

Ballistic Pendulum Test Setup

Recall: Solenoid Force Model Derivation

Goal: Determine max impulsive force from solenoid using COMSOL model

Solenoid Force Model

Copper Solenoid Parameter	Value		FORC	EVS.	VOLT	AGE	
Outer diameter	3.000 in	300					
Inner diameter	0.039 in	050					9
Height	0.190 in	250 18 (0 N				•
Wire thickness	0.030 in	200 (40).5 lb)				
Average gap between wire loops	0.007 in	Z 150					
Number of turns	36	For		ø			
Copper Target Disk Parameter	Value	100					
Gap distance	0.078 in	50					
Disk thickness	0.078 in				836 V		
Disk Diameter	4.000 in	400	500 600	o 700 Volta <u>c</u>	800 3e (V)	900	1000
Overview Schedule Ballistic Flat Plate Flat Plate Full Wing Full Wing Bud 3/2/16 University of Colorado Boulder Aerospace Engineering Sciences							

Budget

1100

Solenoid Force Model & Predicted Results

Accelerometer Sensitivity: 1.0 mV/g → Force Uncertainty: <u>+</u> 2.4 lb

Schedule

Ballistic

Pendulum

In-House **Encoder Uncertainty**: 0.1° → Force Uncertainty: <u>+</u> 0.47 lb

Full Wing

Wind Caae

Full Wing

Deflection

> Overview 3/2/16

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Caae

Flat Plate

Deflection

17

<u>Budg</u>et

Flat Plate Deflection Test Overview

Purpose

 Verify ANSYS deflection model with measured deflection

Requirements Verified

- DR.1.3 Operation of the deicing mechanism shall not damage or degrade the structural integrity of the wing
- DR.2.1 The deicing mechanism shall be capable of **removing 3/8 in thick ice** on test section

Flat Plate Deflection Test Setup

Recall: Flat Plate Analysis & ANSYS Model

- Flat Plate ANSYS Model- calculates deflection of carbon fiber, force necessary to break ice thickness
- To Check model: Back of the Envelope Deflection for Flat Plate
 from Dearth's Formulas
 - from Roark's Formulas
- Full model validation to occur with deflection and ice break testing

Overview

Schedule

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Caae

IFull Wina

Deflection

Flat Plate

Deflection

Ballistic

Pendulum

Budget

Full Wina

Wind Caae

Flat Plate ANSYS Deflection Model

Flat Plate Deflection Expected Results from ANSYS

Flat Plate Deflection Model

* Force required to break 3/8 in ice on flat plate = ~45 lb \rightarrow 0.057 in deflection of carbon fiber w/ ice

Expected Error in Measurements

Without ice on plate (no ice when measuring in Thorlabs) Predicted Deflection = 0.230 in <u>+</u> 0.005 inch

Flat Plate Wind Cage Test Overview

Purpose

- Validate flat plate ANSYS model
 with force & ice breaking
- Test in representative flight
 conditions

Flat Plate Wind Cage Test Setup

Requirements Verified

- DR.2.1 The deicing mechanism shall be capable of removing 3/8 in thick ice on test section
- SPEC.2.1 The deicing mechanism shall remove ice... with **wind speed = 65 knots**.

Flat Plate Wind Cage Expected/Actual Results

3 leaf blowers simulation: each leaf blower located 1 ft from leading edge

Schedule

CFD Assumptions

- Turbulent and Laminar flow
- Adiabatic Walls
- 1 micro-inch wall roughness

Data from Wind Tunnel Measurements (12 in from outlet)

• At outlets: 68 knots

Flat Plate

Wind Caae

- 1/2 way between outlets: 7 knots
- ¹/₄ way between outlets: 27 knots
- * Distance between outlet centers = 9 in
- * Distance between outlet edges = 6 in

Full Wina

Deflection

* Anemometer diameter = 2.5 in

> Overview 3/2/16

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Deflection

Ballistic

Pendulum

Budget

Full Wina

Wind Caae

Full Wing Section Deflection Test Overview

Purpose

- Verify ANSYS deflection model
 - Laser trials complete before level 3 testing

Requirements Verified

- DR.1.3 ... deicing mechanism shall **not damage or degrade the structural integrity** of the wing
- DR.2.1 The deicing mechanism shall be capable of **removing 3/8 in thick ice** on test section

Full Wing Section Test Setup

Full Wing Section ANSYS Stress Model

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Deflection

Ballistic

Pendulum

Schedule

Flat Plate

Wind Cage

Full Wing

Deflection

Full Wing

Wind Cage

25

<u>Budg</u>et

Full Wing Section Deflection ANSYS Expected Results

Full Wing Section Deflection Model

* Force required to break 3/8 in ice on flat plate = ~40.5 lb \rightarrow 0.185 in deflection of carbon fiber w/o ice

Expected Error in Measurements

Schedule

Ballistic

Pendulum

Without ice on full wing section (when measuring in Thorlabs) Predicted Deflection = 0.185 in <u>+</u> deflection error

Flat Plate

Wind Caae

Full Wina

Deflection

Full Wina

Wind Cage

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Deflection

Budget

Full Wing Section Wind Cage Test Overview

Purpose

- Gather data on ice crack
 propagation
- Test in representative flight
 conditions

Full Wing Section Wind Cage Test Setup

Requirements Verified

- DR.2.1 The deicing mechanism shall be capable of removing 3/8 in thick ice on test section
- SPEC.2.1 The deicing mechanism shall remove ice... with **wind speed = 65 knots**.

Full Wing Section Wind Cage Expected Results

Flat Plate Wind Cage Model

CFD Assumptions

- Turbulent and Laminar flow
- Adiabatic Walls

Schedule

• 1 micro-inch wall roughness

Data from Wind Tunnel Measurements (12 in from outlet)

Full Wing

Wind Caae

- At outlets: 68 knots
- ¹/₂ way between outlets: **7 knots**
- ¹/₄ way between outlets: **27 knots**

Full Wina

Deflection

SolidWorks flow simulation on full wing section (3 leaf blowers)

Leaf blower wind speed located 1 ft from leading edge

At leading edge: Avg Speed = 65 knots (up to 85% variation along span)

Flat Plate

Deflection

Ballistic

Pendulum

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Caae

Budget

Budget

3/2/16

Schedule

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Cage

Full Wing

Deflection

Full Wing

Wind Cage

Flat Plate

Deflection

Ballistic

Pendulum

Budget

Budget Status

Future Expenses: Electronics:

Capacitors, Micro-Controller, Thyristors, Pillow Bearings

Wing Test Section:

Mold Release, Vacuum Bags, Sealant Tape, Curing Platform

Management:

Symposium Poster, Printing, AIAA Conference

Questions?

3/2/16

Requirements – FR1

FR.1 The full-span system shall be integrable with the Orion UAV.

DR.1.2 The deicing mechanism shall be integrable with a wing in the shape of the DAE11 airfoil.

SPEC.1.2.1 The test section chord length shall be 72 in (6 ft).

DR.1.2.1 The components of the deicing mechanism internal to the wing test section

shall fit between the leading edge (0 in.) and half-chord line (36 in.) in the chordwise

direction.

DR.1.3 The installation of the deicing mechanism shall not damage or degrade the structural

integrity of the wing.

Schedule

DR.1.4 The operation of the deicing mechanism shall not damage or degrade the structural integrity of the wing over a lifetime of 150 hours.

Flat Plate

Wind Caae

Full Winc

Deflection

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Deflection

Ballistic

Pendulum

Budget

Full Wing

Wind Cage

Requirements – FR2

FR.2 The deicing mechanism shall remove ice.

SPEC.2.1 The deicing mechanism shall remove ice in an environment with wind speed = 65 knots.

DR.2.1 The deicing mechanism shall be capable of removing 3/8 in thick ice on test section.

SPEC.2.1.1 The ice shall cover the test section from the leading edge to 7% of the chord

(7.2 in) as measured chord-wise from the leading edge on the upper airfoil surface and

to 2% of the chord (1.7 in) as measured chord-wise from the leading edge on the lower

airfoil surface

Schedule

DR.2.2 The deicing mechanism shall be capable of removing ice at any time during a five-day continuous flight.

DR.2.3 The maximum allowable thickness of ice remaining at any point along the surface of the

Flat Plate

Full Wina

test section after activating the prototype shall be 0.1 in.

Ballistic

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Budget

Full Wing

Wind Caae

Requirements – FR3

FR.3 The full-span system shall use less than 4kW-hr of energy to deice the wing section.

DR.3.1 The deicing mechanism shall operate on an incoming 28 V DC voltage line.

DR.3.2 The full-span system instantaneous power draw shall be at most 2 kW.

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Deflection

Ballistic

Pendulum

Flat Plate

Wind Cage

Full Winc

Deflection

Full Wing

Wind Caae

Schedule Backup

3/2/16

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Deflection

Ballistic

Pendulum

Schedule

Flat Plate

Wind Cage

Full Wing

Deflection

Budget

Full Wing

Wind Cage

Work Plan MSR

Aerospac

Spring 2016

Ballistic Pendulum Backup

3/2/16

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Deflection

Flat Plate

Wind Cage

Full Wina

Deflection

Ballistic

Pendulum

Full Wing

Wind Cage

Pendulum University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Cage

Full Wing

Deflection

Full Wing

Wind Cage

Flat Plate

Deflection

Ballistic

Budget

Force Model Verification

Recall: Solenoid Force Model Derivation BACKUP

Goal: Determine max impulsive force from solenoid using COMSOL model

COMSOL Model Backup

Magnetic field lines from COMSOL model

Ballistic Pendulum Energy Conservation Method

Goal: Determine impulsive force from energy conservation

Accelerometer Backup

3/2/16

3/2/16

Schedule

Aeros

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Caae

Full Winc

Deflection

Flat Plate

Deflection

Ballistic

Pendulum

Budget

Full Wing

Wind Caae

Solenoid Force Model & Predicted Results

Acceleration & Max Angle Models

Deflection Backup

3/2/16

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Caae

Full Wing

Deflection

Flat Plate

Deflection

Ballistic

Pendulum

Budget

46

Full Wing

Wind Cage

Deflection Measurement

3/2/16

University of Colorado Boulder Aerospace Engineering Sciences

Fatigue

Schedule

$$\sigma_{max} = 207 MPa$$

Stress in wing under normal flying conditions:

$$\epsilon = 1500 \mu$$

$$\sigma_{min} = E\epsilon = (41 \text{ GPa})(1500 \mu) = 61 \text{ MPa}$$

$$\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2} = 45.5 \text{ MPa}$$

Goodman's Relation:

Full Wina

Deflection

$$\sigma_a = \sigma_f \left(1 - \frac{\sigma_m}{\sigma_{ts}} \right) = 425 MPa \left(1 - \frac{45.5 MPa}{500 MPa} \right)$$

 $\sigma_{a,max} = 386 MPa$ Maximum allowable stress amplitude

Full Wing

Wind Caae

$$\sigma_{a,actual} = \frac{\sigma_{max} - \sigma_{min}}{2} = 73 MPa$$

Actual stress amplitude is less than maximum

Flat Plate

Wind Caae

Overview 3/2/16

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Deflection

Ballistic

Pendulum

49

Budget

Full Span Analysis Backup

3/2/16

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Cage

Full Wina

Deflection

Flat Plate

Deflection

Ballistic

Pendulum

Budget

Full Wing

Wind Caae

Power Consumption

 $Total \ Energy = \# \ of \ Solenoids \ * \# \ of \ Impulses * \ \frac{Energy}{Impulse}$

 $Total \ Energy = 76 \ Solenoids \ * 3 \ Impulses \ * 500 \ \frac{Joules}{Impulse}$

Total Energy = 114,000 Joules

Power = 2 kW for 1 min or 100 W for 17 min

✓ Power required to run mechanism will not exceed 2kW

Flat Plate

Wind Caae

Full Wina

Deflection

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Deflection

Ballistic

Pendulum

Schedule

Full Wing

Wind Cage

Full-span Backup

Full-span Weight Budget

ltem	Weight (Ib)
Solenoids + Target Plates (76)	38.3
Housings (76)	69.3
Capacitors + Mounting (10)	27.2
Wire + Mounting	30.7
Voltage Converters	55.0
Total	221 lb

Manufacturing Backup

Overview

3/2/16

Flat Plate

Wind Caae

Full Wing

Deflection

Flat Plate

Deflection

Ballistic

Pendulum

Budget

Full Wing

Wind Cage

Wing Section Backup – Housing Unit

Housing Unit SolidWorks Designs

55

Wing Section Backup – Support Structure

Support Structure SolidWorks Designs

3/2/16

University of Colorado Boulder Aerospace Engineering Sciences

56

Test Cage (all units in inches)

Wing Section Rib Backup

Ballistic

Pendulum

Schedule

Dragon Plate Rib (Carbon Fiber plates with foam core)

Full Wing

Wind Cage

Full Wing

Deflection

Flat Plate

Wind Cage

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Deflection

Budget

Test Setup Backup

3/2/16

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Caae

Full Wing

Deflection

Flat Plate

Deflection

Ballistic

Pendulum

JYEI

Full Wing

Wind Cage

Test Setup Backup

Leaf Blower Simulation

 \rightarrow 3 Leaf blowers simulated in test cage with exit velocity = 250 knots

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Caae

Flat Plate

Deflection

Ballistic

Pendulum

Schedule

Full Wing

Deflection

Full Wing

Wind Caae

<u>Budg</u>et

Flow Simulation Details

Flow Sim Boundary Conditions:-at leaf blower outlets: 250 knots -at test cage inlet/outlet: environmental pressure (12.2 psi)

Flow Sim Initial Conditions:

-Environmental pressure (**12.2 psi**) -Environmental Temp: **-11 F** -Turbulence intensity: **2%** -Turbulence length: **0.2 in** -Velocity: **0 kn**

Flow Sim Misc Parameters:

- -Turbulent and Laminar flow -Adiabatic Walls
- -1 microinch wall roughness

Schedule

Wind Tunnel Measurements (12 in from outlet):

Ballistic

Pendulum

-at outlets: 68 knots
-halfway between outlets: 7 knots
-quarter way between outlets: 27 knots
(distance between outlet centers was 9 in; distance between outlet edges was 6 in; anemometer diameter is 2.5 in)

Flat Plate

Deflection

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Caae

Full Wing

Deflection

Full Wing

Wind Cage

Budget

Wing Section Wind Cage Backup

Overview 3/2/16

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Cage

Flat Plate

Deflection

Ballistic

Pendulum

Schedule

Full Wing

Deflection

Full Wing

Wind Cage

62

Budget

Leaf Blower Stand

Full Wing

Wind Cage

Full Wing

Deflection

3/2/16

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Cage

Flat Plate

Deflection

Ballistic

Pendulum

63

Budget Breakdown

Electrical Purchases		
Ribbon Wire	\$400	
Diode damper, Capacitors, Resistors, Switch	\$525	
Nylon for Pendulum Arm	\$147	
Total:	\$1,072	

Ice Casting Apparatus		
Low Density Poly	\$15	
Acrylic	\$90	
Aluminum Blocks	\$63	
Total:	\$168	

Deflection Wind Cage Pendulum University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Deflection

Flat Plate

Ballistic

Budget

Wind Cage

Budget Breakdown

Wing Test Section			
High Density Foam	\$1,530		
Vacuum Bag Roll	\$78		
Peel Ply Roll	\$43		
Quick Lock Seals / Tape	\$100		
Mold Release	\$17		
Dragon Plate	\$599		
Nomex Honeycomb	\$217		
Total:	\$2,584		

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Wind Cage

Full Wing

Deflection

Flat Plate

Deflection

Ballistic

Pendulum

Budget

Wind Cage

Dynamic Testing			
Fan	\$706		
Leaf Blowers	\$150		
Wood / Home Depot	\$120		
Total:	\$976		

