

Actuated Electromagnetic System for Ice Removal

Senior Projects Symposium April 15, 2016

Customers Ellis Langford, Ed Wen		Advisor Joe Tanner
Kelly Allred	Jacquie Godina	Andrew Moorman
Jonathan Eble	Andre Litinsky	Libby Thomas
Nicole Ela	Runnan Lou	Colin Zohoori

4/15/16

- 1. Project Background
- 2. Design Description
- 3. Design Verification and Validation
- 4. Conclusion

Project Background

Project Background

Design Overview

Verification & Validation

Conclusion

4/15/16

Project Background

Problem: Ice buildup on aircraft wings in flight

- Decreases Lift-to-Drag Ratio (L/D)
- Reduces mission capabilities
- In extreme cases can result in a crash

Ice formation on wing.¹

Orion UAV 2

Application: ORION Aircraft

- 5 day continuous flight time
- 132 ft. wing span
- Cruising altitude of 20,000-30,000 ft. at 65 kias

Requires: Low mass, low power deicing system to increase flight path possibilities without decreasing capabilities

Project Background

Design Overview

Verification & Validation

Conclusion

Problem Requirements

Problem Statement: Design, build, and test a small-scale prototype of a deicing system for the Orion UAV.

Functional Requirements

- The full-scale system shall be **integrable with the Orion UAV**.
- 2. The prototype shall **remove ice**.

3. The full-scale system shall use less than 4kW-hr to deice the wing section.

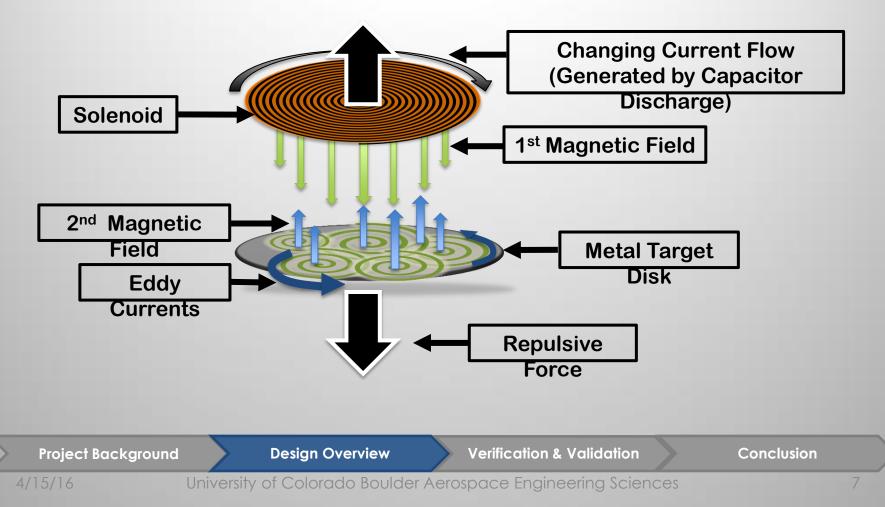
Design Overview

Project Background

Design Overview

Verification & Validation

Conclusion


4/15/16

Electromagnetic Solution

Generate a force using electromagnetics- force impacts leading edge of wing and breaks ice

Solution Integration

Design Verification and Validation

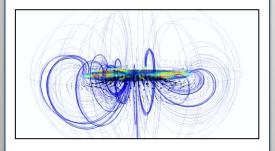
Project Background

Design Overview

Verification & Validation

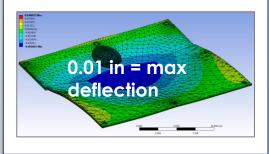
Conclusion

Modeling

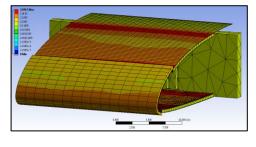


Modeling Goals

- 1. Find force produced by designs
- 2. Find force required to break ice
- 3. Check that force does not damage material
- 4. Refine force, material, and ice values with testing


Solenoid Force Model

 COMSOL- Calculate force based on solenoid and target disk parameters


Flat Plate Model

 ANSYS- Calculate expected deflection of material under force

Wing Section Model

- ANSYS- Calculate force required to break ice
- Model that no structural damage occurs with lifetime

Project Background

Design Overview

Verification & Validation

Conclusion

High Level Test Overview

TEST

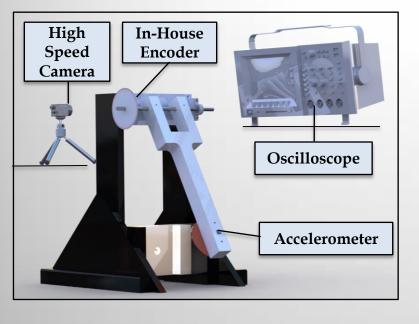
PURPOSE

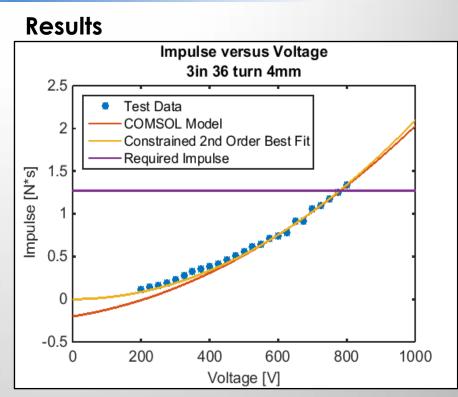
Ballistic Pendulum Test	 Verify Solenoid Force Model Gather experimental data on solenoids
Laser Deflection Test (Flat Plate)	 Measure the deflection to verify material properties via Flat Plate Model
Ice Breaking Test (Flat Plate & Wing Section)	 Verify force required to break ice Prove functionality while meeting power and integration requirements

Project Background

Design Overview

Verification & Validation


Conclusion



Ballistic Pendulum Testing

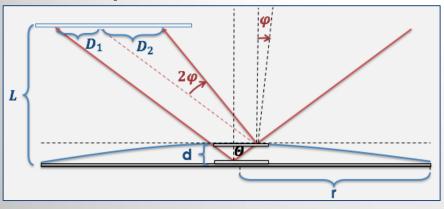
Test Setup

Conclusion

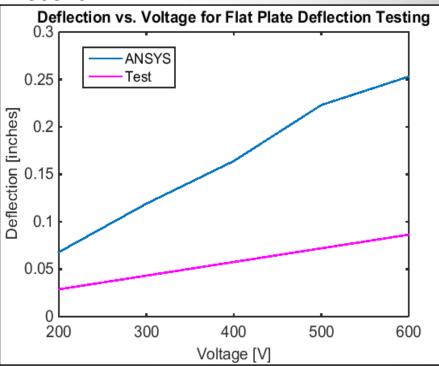
- Model predicted impulse matches test results
- Modeling software limitations- based on experimental data trends, solenoid design was improved upon

 Project Background
 Design Overview
 Verification & Validation
 Conclusion

 4/15/16
 University of Colorado Boulder Aerospace Engineering Sciences
 12



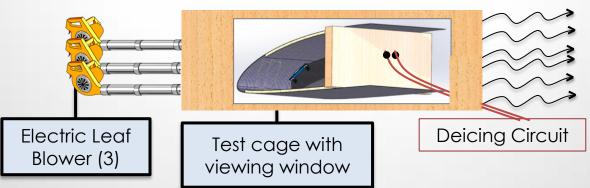
Flat Plate Testing


Test Setup

Aerospac

Builaaufu

Results


Conclusion

- Experimental deflection is less
 than modeled
- Adjustments to material values

Wing Section Testing

Start

After 1 Impulse

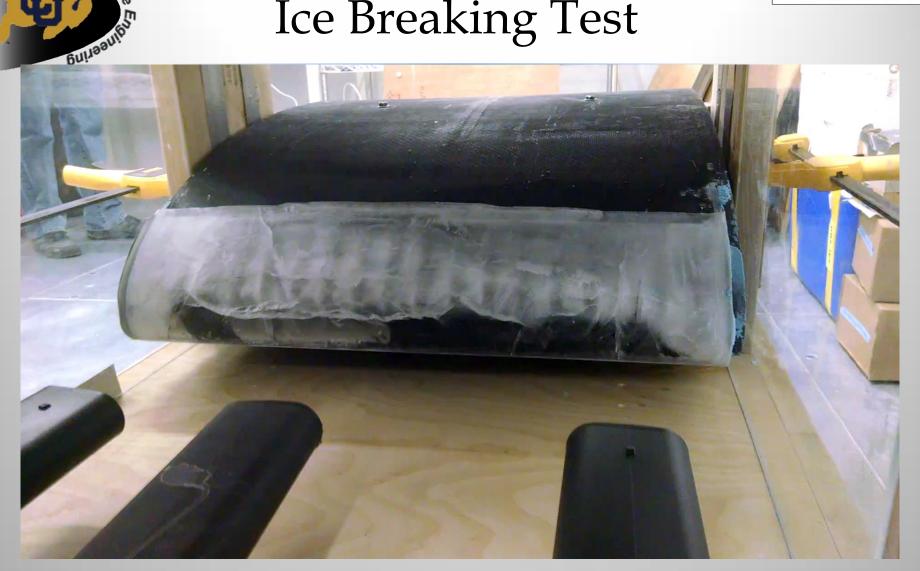
After 2 Impulses After 3 Impulses

Conclusion

- ANSYS model predicts requiring 40.5 lb. force to break ice with one impulse
- Required 3 impulses at 40.5 lb. force

Project Background

Design Overview


Verification & Validation

Conclusion

4/15/16

Ice Breaking Test

Project Background

Aerospace

Design Overview

Verification & Validation

Conclusion

Conclusion

Project Background

Design Overview

Verification & Validation

Conclusion

4/15/16

Conclusion of Testing

- 1. Solenoid Design
- Verified force required to break ice can be produced
- For given voltage, larger diameter creates larger impulse but possible size limited by wing shape and manufacturing
- 2. Materials
- Carbon fiber deflects less then expected-less strain
- Values used for ice adhesion have uncertainty
- 3. Functionality
- Solution does break ice
- Less deflection then predicted means more impulses required to completely clear wing

Full Scale Integration

Orion UAV takeoff ⁴

From testing, 1 Solenoid clears 2 ft. section of ice off wing section

→ For full-span, deicing requires 62 solenoids + Housing + Supporting Circuitry

Total Mass Estimate = 200 lb.

Total Power Estimate = 310 W to recharge and fire at 5 minute intervals

Note: requires further testing to account for extra rigidity of ORION wing ribs and further testing on ice crack and shed areas

 Project Background
 Design Overview
 Verification & Validation
 Conclusion

 4/15/16
 University of Colorado Boulder Aerospace Engineering Sciences
 18

Ice Breaking Demo

Come see a demo of breaking ice at **2:30 pm**

Project Background

Design Overview

Verification & Validation

Conclusion

4/15/16

[1] "Aurora's Orion MALE UAV Aims For 120-hr. Flight," Aviation Week. Sept. 17, 2013.

[2] "Aurora Orion UAV Could Cut ISR Costs 80%," Aerospace. Nov. 30, 2010.

[3] Aurora Flight Sciences. AFS website. Accessed April 13, 2016

[4] "Orion Unmanned Aircraft World Record Confirmed," Aurora Flight Sciences. July 1, 2015.

