

Actuated Electromagnetic System for Ice Removal

Spring Final Review April 28, 2016

Customers Ellis Langford, Ed Wen		Advisor Joe Tanner
Kelly Allred	Jacquie Godina	Andrew Moorman
Jonathan Eble	Andre Litinsky	Libby Thomas
Nicole Ela	Runnan Lou	Colin Zohoori

4/28/16 Unive

Project Purpose/Objectives

Design Description

Test Overview

Test Results

Systems Engineering Project Management

Project Background

Problem: Ice buildup on aircraft wings in flight

- Decreases Lift-to-Drag Ratio (L/D)
- Reduces mission capabilities
- In extreme cases can result in a crash

Ice formation on wing.¹

Orion UAV²

Application: ORION Aircraft

- 5 day endurance
- 132 ft. wing span
- Cruising altitude of 20,000-30,000 ft. at 65 kias

Requires: Low mass, low power deicing system to increase flight path possibilities without decreasing capabilities

Design Description > Test Over

Test Overview 💙

Test Results

Systems Engineering

tems leering

Project Manag<u>ement</u>

University of Colorado Boulder Aerospace Engineering Sciences

Problem Statement & Objectives

Design, build, and test a small-scale prototype of a deicing system for the Orion UAV.

Functional Requirements

Con Altone

Orion UAV²

- FR.1 The full-scale system shall be integrable with the Orion UAV.
- FR.2 The prototype shall *remove ice*.
- FR.3 The full-scale system shall use *less than 4kW-hr to deice* the wing section.

Design Description

Test Overview

Test Results

Systems Engineering

Project Management

Capacitor Discharge EM Force Deflection Breaking Ice

Design Overview (Integration)

4/28/16

Concept of Operations

Purpose of Level 3:

- Integration into wing structure-like Orion UAV
- Testing in flight-like wing section and conditions

Project Roadmap

9

To remove 3/8 inches of ice off of <u>representative</u> wing section...

High Level Test Overview

TEST

PURPOSE

Ballistic Pendulum Test	 Verify Solenoid Force Model Refine design using ballistic pendulum test data
Laser Deflection Test (Flat Plate)	 Measure deflection to verify material properties via Flat Plate Model
Ice Breaking Test (Flat Plate & Wing Section)	 Verify force required to break ice Prove functionality while meeting power and integration requirements

Description **Test Overview**

Test Results

Project Managem<u>ent</u>

Objectives

Test Results

Level 1- Ballistic Pendulum Test Overview

Goal: Verify COMSOL impulse output in order to ensure ballistic pendulum is an adequate tool for measuring impulse

Level 1- Ballistic Pendulum Test Results

COMSOL Model Verification

Testing Specs = COMSOL Specs

- Solenoid outer diameter = 3 in
- Solenoid inner diameter = 0.25 in
- Gap distance = 4 mm
- Number of turns = 36

Conclusions

- Model-predicted impulse matches test
 results
- Modeling software limitations- based on experimental data trends, solenoid design was improved upon

Implications of Model Verification

Level 1- Solenoid Design Refinement

Level 2- Flat Plate Deflection Test Overview

Goal: Verify ANSYS force model through deflection measurements

Level 2- Flat Plate Deflection Test Results

Test conditions match Flat Plate Model conditions

- Boundary conditions = 8 fixed points (corners & mid-sides)
- Impact location same in ANSYS and test

ANSYS Flat plate deflection model with Impulse = 0.29 lb-s

Purpose/ Objectives Design Description

Test Overview

Test Results

Systems Engineering

g Project Management

4/28/16

Level 2- Flat Plate Model Refinement

Level 2- Flat Plate Ice Removal Test Results

Purpose: check functionality of ice breaking on simple geometry

Testing conditions

- 3/8 in ice thickness
- -15°F ambient temperature
- Actuated at 615V
- First Blast: Removed \sim 50% of the ice.
 - After blast #1: Cracks had fully propagated through the ice.
- Second Blast: Removed an additional ~45%.

Initial

Impulse #1

Impulse #2

DR.2.1

Level 2 Deflection Test Conclusions:

- Refined material properties for further confidence in models (ice breaking predictions)
- Carbon fiber deflects enough from mechanism impulse to theoretically break ice

Level 3- Wing Section Test Overview

Goal: Proof of functionality while meeting design requirements.

Wind cage, wind speed, test section setup in walk-in freezer

Testing Environment

- Location: walk-in freezer at INSTAAR
- Testing temperature range = -15°F → 0°F
- Wind speed = 65 knots average (at leading edge)

Testing Procedure

- Setup wing section to cast ice (~ 4 hrs)
- Prepare wing section in wind cage (& leaf blowers)
 for testing
- Transport mechanism, power supply into freezer
- Turn on leaf blowers, actuate mechanism with flat plate/full wing section
- If ice remaining, charge & actuate until clear

Level 3- Wing Section ANSYS Model

Level 3- Wing Section **Ice Removal Test Results**

Initial

Testing done at 612 V

Impulse #2

Impulse #3

Purpose/ Objectives

Design Description

Test Overview

Test Results

Engineering

Project Management

Level 3- Wing Section Ice Removal Test Results

900 Volts = 0.35 lb-s

- First Blast: Removed ~80% of the ice.
- Second Blast: Removed all remaining big chunks.

900 Volts only

required 2

blasts

Blast #2

After blast #1: Cracks had fully propagated through the ice.

Design

Purpose/ Objectives

es Description

Test Overview

Test R

Test Results

Systems Engineering

Project Manag<u>ement</u>

4/28/16

Level 3 - Wing Section Ice Removal Test Results

Summary of Results:

Mechanism successfully broke ice \rightarrow Proof of functionality

Higher voltages \rightarrow Fewer impulses needed

Ice removal hindered by adhesion \rightarrow Should be modeled in the future

Remaining ice had a depth of > 0.1 in \rightarrow May disrupt laminar flow

Level 3 Ice Removal Requirement Summary:

- ✓ System successfully integrated within DAE11 test section
- X Maximum ice thickness after actuation was greater than 0.1 in.
- ¹ ✓ The deicing mechanism shall be capable of removing 3/8 in thick ice on test section.

Conclusions from Levels

Full Scale Integration

Orion UAV takeoff³

From testing, 1 Solenoid clears 2 ft. section of ice off wing section

→ For full-span, deicing requires 62 solenoids + Housing + Supporting Circuitry

Total Mass Estimate = 200 lb.

Total Power Estimate = 310 W to recharge and fire at 5 minute intervals

Note: requires further testing to account for extra rigidity of ORION wing ribs and further testing on ice crack and shed areas

Systems Engineering

Systems Engineering Management

4/28/16

Fall Semester

University of Colorado Boulder Aerospace Engineering Sciences

Spring Semester

Lessons Learned

Fall Semester:

- Don't lean on customer for whole project scope.
- > **REALLY** know project before moving forward.
- Engineers model then validate.

Spring Semester:

- > Don't expect to get it right the first time it's re-built.
- Shipping takes 2X longer than expected.
- Shipping costs 2X more than expected.

Purpose/ Objectives Design Description

Test Overview

Test Results

Systems Engineering Project Management

4/28/16

University of Colorado Boulder Aerospace Engineering Sciences

Project Management

Project Purpose/ Design Test Overview Test Results Objectives Description Engineering Management University of Colorado Boulder Aerospace Engineering Sciences

4/28/16

Project Management

Total Team Hours = 3,685

Contribution	Cost
Team Hours	\$115,156
Including 200% overhead cost	\$115,156
Material Cost	\$6,771

Total Industry Cost:

\$237,083

**Assumes \$65k salary for each team member

Project Conclusion

An electromagnetic deicing system is a **VIABLE** solution for deicing the Orion UAV

Questions?

4/28/16

References

1"Ice on the wing of the NASA Twin Otter," UCAR, 2005 URL: http://www.ucar.edu/communications/staffnotes/0412/ice.html [citied 11 Oct. 2015].

² "Flight Global:- Aurora's Orion UAV in Storage after USAF World-record Flight - SUAS News." SUAS News. N.p., 16 Sept. 2015. Web. 19 Apr. 2016. < http://www.suasnews.com/2015/09/flight-global-auroras-orionuav-in-storage-after-usaf-world-record-flight/>.

³ Warwick, Graham. "Aurora Claims Endurance Record For Orion UAS." Aviation Week. N.p., n.d. Web. 19 Apr. 2016. < http://aviationweek.com/defense/aurora-claims-endurance-record-orion-uas>.

University of Colorado Boulder Aerospace Engineering Sciences

Functional Block Diagram

Requirements – FR1

FR.1 The full-span system shall be integrable with the Orion UAV.

DR.1.2 The deicing mechanism shall be integrable with a wing in the shape of the DAE11 airfoil.

SPEC.1.2.1 The test section chord length shall be 72 in (6 ft).

DR.1.2.1 The components of the deicing mechanism internal to the wing test section shall fit between the leading edge (0 in.) and half-chord line (36 in.) in the chord-wise direction.

DR.1.3 The installation of the deicing mechanism shall not damage or degrade the structural integrity of the wing.

DR.1.4 The operation of the deicing mechanism shall not damage or degrade the structural integrity of the wing over a lifetime of 150 hours.

Requirements – FR2

FR.2 The deicing mechanism shall remove ice.

SPEC.2.1 The deicing mechanism shall remove ice in an environment with wind speed = 65 knots.

DR.2.1 The deicing mechanism shall be capable of removing 3/8 in thick ice on test section.

SPEC.2.1.1 The ice shall cover the test section from the leading edge to 7% of the chord (7.2 in) as measured chord-wise from the leading edge on the upper airfoil surface and to 2% of the chord (1.7 in) as measured chord-wise from the leading edge on the lower airfoil surface

DR.2.2 The deicing mechanism shall be capable of removing ice at any time during a five-day continuous flight.

DR.2.3 The maximum allowable thickness of ice remaining at any point along the surface of the test section after activating the prototype shall be 0.1 in.

Requirements – FR3

FR.3 The full-span system shall use less than 4kW-hr of energy to deice the wing section.

DR.3.1 The deicing mechanism shall operate on an incoming 28 V DC voltage line.

DR.3.2 The full-span system instantaneous power draw shall be at most 2 kW.

Backup - TRR Schedule

Backup - CDR Cost Plan

Deflection Measurement

Backup Slides for Equation

Backup Slides for Equation

Switch from Avg. Force to Impulse

- We cannot apply the exact waveform applied by our solenoid in ANSYS. And because the time is short, impulse will better account for the differences.
- Average force is deceptive. It is completely possible to have a higher overall average force, but be less effective.
- Reduces error due to time assumptions. Our current average force models make assumptions for discharge time. Using impulse removes these assumptions.

Level 1- Ballistic Pendulum Impulse Calculations

$$\omega = \sqrt{\frac{2PE}{I}}$$

$$V_{com} = \omega * L_{com}$$

Impulse = $V_{com} * m$

Fatigue

Schedule

$$\sigma_{max} = 207 MPa$$

Stress in wing under normal flying conditions:

$$\begin{aligned} \epsilon &= 1500 \ \mu \\ \sigma_{min} &= E\epsilon = (41 \ GPa)(1500 \ \mu) = 61 \ \text{MPa} \\ \sigma_m &= \frac{\sigma_{max} + \sigma_{min}}{2} = 45.5 \ \text{MPa} \end{aligned}$$

Goodman's Relation:

Full Wina

Deflection

$$\sigma_a = \sigma_f \left(1 - \frac{\sigma_m}{\sigma_{ts}} \right) = 425 MPa \left(1 - \frac{45.5 MPa}{500 MPa} \right)$$

 $\sigma_{a,max} = 386 MPa$ Maximum allowable stress amplitude

Full Wing

Wind Caae

$$\sigma_{a,actual} = \frac{\sigma_{max} - \sigma_{min}}{2} = 73 MPa$$

Actual stress amplitude is less than maximum

Flat Plate

Wind Caae

Overview 3/2/16

University of Colorado Boulder Aerospace Engineering Sciences

Flat Plate

Deflection

Ballistic

Pendulum

59

Budget