

<u>Actuated Electromagnetic System for Ice Removal</u>

Critical Design Review December 1, 2015

Customers Ellis Langford, Ed Wen		Advisor Joe Tanner
Kelly Allred	Jacquie Godina	Andrew Moorman
Jonathan Eble	Andre Litinsky	Libby Thomas
Nicole Ela	Runnan Lou	Colin Zohoori

Project Description

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Problem Statement

12/1/15

Levels of Success

 Project Description
 Design Solution
 Verification & Validation
 Planning

 12/1/15
 University of Colorado Boulder Aerospace Engineering Sciences

Concept of Operations

Aeros

Design Solution

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Solenoid & Target Disk Design

Ribbon Wire Solenoid				
Outer Diameter (D _o)	3.0 in.			
Inner Diameter (D _i)	0.50 in.			
Height	0.19 in.			
Number of Loops (N)	50			

Copper Target Disk				
Gap Distance (d)	0.08 in.			
Thickness (†)	0.08 in.			

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Final Integrated Design

Top Plate & Base Plate

- High Density Polyethylene
- Thickness: 0.04 in <u>+</u> 0.01 in
- Allow for 22% growth in solenoid diameter

Solenoid

- Outer Diameter = 3 in
- Inner Diameter = 0.5 in

2 Dragon Plate Support Structures per Solenoid

- Carbon Fiber Sandwich with Foam Core
- Each Carbon Fiber Plate Thickness = 0.03 in
- Foam Core Thickness = 0.5 in

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Functional Block Diagram

Critical Project Elements

2/1/15

Design Requirements & Satisfaction

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

CPE 1 – Structural Integrity

FR.1 The full-scale system shall be integrable with the Orion UAV.

DR.1.1	The installation of the system shall not damage or degrade the structural integrity of the wing.
DR.1.2	The operation of the system shall not damage or degrade the structural integrity of the wing.
FR.2 The pro	ototype shall remove ice on wing section.
5501	

DR.2.1 The prototype shall be **<u>capable of removing ice</u>** built-up to 3/8 in thick on test section.

Project Description **Design Solution**

Ution

Verification & Validation

Planning

12/1/15

Flat Plate Analysis – Setup

Goal - Confirm model with test data to prove level 3 design can meet requirements

ANSYS Model Setup

Flat Plate Setup

Flat Plate Analysis – Ice Rupture

ANSYS Model

Required volume of ice on test section can break with determined force

Flat Plate Analysis - Carbon Fiber

ANSYS Model

Analysis Method	Force	$ au_{calc}$		$ au_{allow}$	σ_{calc}		σ_{allow}
ANSYS Model	57 lb	58.2 psi	<	125 psi	15.7 ksi	<	72.5 ksi

✓ Force required to break ice will not damage flat plate test section

Design Solution

Verification & Validation

Planning

12/1/15

Curved Test Section Model

Goal – Knowing model is verified with test data from flat plate model, show that level 3 test section can withstand force required using ANSYS

DAE11 ANSYS Model

Project Description **Design Solution** Verification & Validation Planning

12/1/15

Curved Test Section Model Analysis

Analysis Method	Force	$ au_{calc}$		$ au_{allow}$	σ_{calc}		σ_{allow}
ANSYS Model	40.5 lb	58.2 psi	<	125 psi	15.7 ksi	<	72.5 ksi

✓ Force required to break ice will not damage DAE11 wing section

Verification & Validation

Planning

12/1/15

Housing Unit Model

Goal – Show that reaction force does not damage internal support structure

ANSYS Housing Unit Model

Housing Unit Model Analysis

ANSYS Housing Unit Model

Analysis Method	Force	$ au_{calc}$		$ au_{allow}$	σ_{calc}		σ_{allow}
Carbon Fiber Analysis	41 lb	1.4 * 10 ⁻³ psi	<	3.0 ksi	0.27 *10 ⁻³ psi	<	4.6 ksi

✓ Force required to break ice will not damage flat plate test section

Structural Integrity Conclusions

FR.1 The full-scale system shall be integrable with the Orion UAV.

- DR.1.1 The installation of the system shall not damage or degrade the structural integrity of the wing.
- DR.1.2 The operation of the system shall not damage or degrade the structural integrity of the wing.
- Wing structure can withstand required force
 Internal support can withstand reaction forces and moments

FR.2 The prototype shall remove ice on wing section.

Aerospar

6uiner

- DR.2.1 The prototype shall be capable of removing ice built-up to 3/8 in thick on test section.
- Force required to remove ice modeled for flat plate and test section
 Force required to remove ice tested for flat plate

CPE 2 – Solenoid Design

FR.1 The full-scale system shall be integrable with the Orion UAV.

DR.1.2 The de-icing mechanism shall be integrable with the DAE11 airfoil.

FR.2 The prototype shall remove ice.

DR.2.1 The prototype shall be capable of removing 3/8 in thick ice on test section.

Solenoid Size Test	Solenoid COMSOL Model	Design and Validation
Volume constraints	MethodsModel limitations	 Model Adjustments Empirical testing

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Solenoid Size Test

Ribbon Wire Solenoid				
Outer Diameter (D $_{o}$)	3.0 in.			
Inner Diameter (D _i)	0.50 in.			
Height	0.19 in			
Number of Loops (N)	50			

Project DescriptionDesign SolutionVerification & ValidationPlanning12/1/15University of Colorado Boulder Aerospace Engineering Sciences

24

Solenoid COMSOL Model

2/1/15

COMSOL Model - Best Case

Peros de la composición de la

Solenoid Parameter	Value
Outer diameter	3.0 in.
Inner diameter	0.04 in.
Height	0.19 in.
Wire thickness	0.03 in.
Number of turns	36
Voltage	1000 V

Target Disk Parameter	Value
Gap between solenoid and disk	0.08 in.
Disk thickness	0.08 in.

Solenoid COMSOL Model

Solenoid COMSOL Model

12/1/15

Model Limitations

Geometric Constraints

Using 3 in. outer diameter:

- Gap between wire loops > 0.007 in
 - Resolution too high to process

Design and Validation

Parameter	Model Value	Manufacturable Value
Outer diameter	3.0 in.	3.00 in.
Inner diameter	0.04 in.	0.10 in.
Height	0.19 in.	0.19 in.
Wire thickness	0.03 in.	0.03 in.
Number of turns	36	> 50
Average gap between wire loops	0.01 in.	~0 in.

= Refinements to model

-Empirical Validation of Model

- Test force produced by design
- Test at capacitor discharge voltage 400-1000V to verify model at multiple points

Project Description Design Solution Verification & Validation

Planning

Solenoid Design Conclusions

FR.1 The full-scale system shall be integrable with the Orion UAV.

- DR.1.2 The de-icing mechanism shall be integrable with the DAE11 airfoil.
- ✓ Design fits geometric constraints

FR.2 The prototype shall remove ice.

DR.2. The prototype shall be capable of removing 3/8 in thick ice on test section.

✓ Design provides enough force to remove ice

CPE 3 – Electrical & Software

FR.2 The prototype shall remove ice on wing section.	
DR.2.1	The prototype shall be capable of removing ice built-up to 0.36 in thick on test section.
DR.2.3	The maximum allowable thickness of ice remaining at any point along the surface of the test section after activating the prototype shall be 0.1 in.
FR.3 The full-scale system shall use less than 4 kW-hr to de-ice the wing section	
DR.3.1	The prototype shall operate on an incoming 28 V DC voltage line
DR.3.2	The full-scale system instantaneous power draw shall be at most 2 kW

Testing Circuit Schematic

Safety Precautions

- 1. Personal Protective Equipment
- 2. Protective Circuitry
- 3. Personal Protective Standards
 - 3 personnel on job at all times
 - Double check that capacitors are discharged
 - Never work on system while power supply is on

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Full Scale Electrical System

For AFS full scale implementation:

Power Consumption

✓ Power required to run mechanism will not exceed 2kW

Software

LabView

- Thermocouple measurements
- Frequency detection

EPS Conclusions

FR.2 The	prototype s	hall remove i	ice on wina	section.
	prototype 3			

- DR.2.1The prototype shall be capable of removing ice built-up to 3/8 in thick on test section.DR.2.3The maximum allowable thickness of ice remaining at any point along the surface of the
test section after activating the prototype shall be 0.1 in.
- ✓ Circuitry can support voltage necessary to remove ice

FR.3 The full-scale system shall use less than 4 kW-hr to de-ice the wing section				
DR.3.1	The prototype shall operate on an incoming 28 V DC voltage line			
DR.3.2	The full-scale system instantaneous power draw shall be at most 2 kW			

✓ Power draw does not exceed 2 kW

Weight Budget

Item	Weight (Ib)
Solenoids + Target Plates (76)	38.3
Housings (76)	69.3
Capacitors (10)	27.2
Wire	30.7
Voltage Converter (1)	25.0
Total	191 lb

- Target: 100 lbs
- Areas to decrease weight: housing unit

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Risk Matrix

u						
Likelihood	Near Certainty					
	Highly Likely			9, 2		
	Likely		10, 1	4		3
	Low Likelihood		7	6,8	5	
	Extremely Unlikely					
		Minimal	Minor	Major	Serious	Catastrophic

Severity

- 1. Circuitry failure
 - 2. Manufacturing ice casting structure
- 3. Unable to produce modeled solenoid force
- 4. Approval of safety plan taking too long
- 5. Ice casting too inconsistent for valid test results
- 6. Poor functionality of deflection measuring device
- 7. Misallocation of time
- 8. Cannot get trigger mechanism circuitry to work
- 9. Solenoid positioning does not fully remove ice
- 10. Manufacturing wing section incorrectly first time

Project Description

Design Solution

Verification & Validation

Planning

Risk Mitigation

Level	Risk	Mitigation
	1	Buy extra circuitry to replace failed component
\bigcirc	2	Keep Matt Rhode in the loop during the manufacturing to help ensure that the tolerances of the mold are correctly met
	3	Redesign solenoid shape and circuitry
\bigcirc	4	Have safety plan ready for approval before start of next semester
\bigcirc	5	Replace or redesign problem component of ice casting trough
\bigcirc	6	Switch to off-ramp deflection measurement design
	7	SE and PM stay in close contact to ensure efficient use of teams time.
	8	Go to Trudy or Bobby for help, or use off ramp trigger design
\bigcirc	9	Adjust solenoid positioning
	10	Have enough extra materials in stock to make a second wing section

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Pro-						
Likelihood	Near Certainty					
	Highly Likely		9			
	Likely	1		3		
	Low Likelihood	6	4, 10	2, 5		
	Extremely Unlikely		7	8		
		Minimal	Minor	Major	Serious	Catastrophic

Severity

- 1. Circuitry failure
 - 2. Manufacturing ice casting structure
- 3. Unable to produce modeled solenoid force
- 4. Approval of safety plan taking too long
- 5. Ice casting too inconsistent for valid test results
- 6. Poor functionality of deflection measuring device
- 7. Misallocation of time
- 8. Cannot get trigger mechanism circuitry to work
- 9. Solenoid positioning does not fully remove ice
- 10. Manufacturing wing section incorrectly first time

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Verification & Validation

Reverse Revers

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Ice Casting

End caps hold test section 3/8" higher than plastic sheet.

High Wind Speed Test - Set-Up

- Create converging nozzle
 - Trash bag + flow straighteners (straws)
- Rectangular area exit = 10" by 24"
- Fan: 13,200 CFM
 - Use converging nozzle to reach testing speed = 75 mph at Leading Edge
- Testing outside of ITLL

Flow Simulation

- Flow simulation created in Solid Works.
- For testing we need to be at 75 mph.
- Flow simulation showed flow around leading edge is about 75 mph (± 4 mph).

Project Description Design Solution Verifi

Verification & Validation

Planning

12/1/15

High Wind Speed Test - Sensors

Testing Needs:	Selected Sensors:			
Temperature Range	Copper Copper Copper Copper States Copper Copper States Copper Copper States Copper Co	Type Thermocouples Range: -200°C to 200°C Measure temperature inside of the wing test section and room temperature.		
Deflection	Hig • R th •	gh Speed Camera + Deflection Test Record testing use frames to verify the deflection of the carbon fiber. Deflection Test using laser measurements		
Amperage	High Contract of the second se	gh Voltage Multimeter Measure amperage in the circuit		
Testing Speed	Pitc • Pi • M • Us	ot Tube Probe + Manometer tot Tube: Dwyer 160-18 Stainless Steel anometer: PVM 100 Micromanometer sed to measure wind speed near the leading edge.		
Project Description	Design Solution	Verification & Validation Planning		
12/1/15 Universit	y of Colorado Boulder A	Aerospace Engineering Sciences 51		

Planning

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Organizational Chart

Work Breakdown Structure

Work Plan

Test Plan

12/1/15

Cost Plan

References

¹"Ice on the wing of the NASA Twin Otter," UCAR, 2005 URL:

http://www.ucar.edu/communications/staffnotes/0412/ice.html [citied 11 Oct. 2015].

²"Deice Disconnect" Flight Safety, 2008 URL: flightsafety.org [cited 11 Oct. 2015].

³"AURORA ORION UAV COULD CUT ISR COSTS 80%," Aerospace Blog, 30 Nov. 2010, URL:

https://aerospaceblog.wordpress.com/2010/11/30/1747 [cited 11 Oct. 2015].

⁴"Eddy Current," URL: http://www.acndt.com/images/EddyCurrentPic1.jpg [cited 10 Oct. 2015].

⁵Ashby, M. F., and David R. H. Jones. Engineering Materials 2: An Introduction to Microstructures, Processing, and Design. 1st ed. Vol. 39. Oxford: Pergamon, 1986. Print.

⁶Chamis, Christos C. "NASA TECHNICAL NOTE." ANALYSIS OF THE THREE-POINT-BEND TEST FOR MATERIALS WITH UNEQUAL TENSION AND COMPRESSION PROPERTIES (1974): n. pag. NASA. Web.

⁷ Roark, Raymond J., and Warren C. Young. *Roark's Formulas for Stress and Strain*. 7th ed. New York: McGraw-Hill, 1989. Print.

⁸ Roark, Raymond J., and Warren C. Young. *Roark's Formulas for Stress and Strain*. 7th ed. New York: McGraw-Hill, 1989. Print.

⁹ Hibbeler, Russell C. Mechanics of Materials. Upper Saddle River, NJ: Pearson Prentice Hall, 2007. Print.

¹⁰ Roark, Raymond J., and Warren C. Young. *Roark's Formulas for Stress and Strain*. 7th ed. New York: McGraw-Hill, 1989. Print.

¹¹"Solenoid-1," 2008, URL: https://commons.wikimedia.org/wiki/File:Solenoid-1.png [cited 12 Oct. 2015].

¹²"Solenoid (Electromagnet) Force Calculator." Solenoid (Electromagnet) Force Calculator. N.p., n.d. Web. 13 Oct. 2015.

¹³"Electronics Fundamentals: Transformer," 2015, URL: http://www.jameco.com/Jameco/workshop/learningcenter/transformer.html [cited 12 Oct. 2015].

¹⁴"Ribbon Solenoid," [cited 12 Oct. 2015].

References

http://aviationweek.com/defense/aurora-claims-endurance-record-orion-uas https://dragonplate.com/ecart/cartView.asp?rp=product%2Easp%3FpID%3D699 http://www.usplastic.com/catalog/item.aspx?itemid=34431&catid=705 http://www.omega.com/pptst/SA1.html http://www.gualityinstruments-direct.com/product/dwyer-160-18-pitot-tube-velometer-18-inches http://www.thorlabs.us/newgrouppage9.cfm?objectgroup_id=3333&pn=S302C https://www.coherent.com/products/?765 http://www.tapplastics.com/product/plastics/plastic sheets rolls/ldpe sheets/410 http://www.onlinemetals.com/merchant.cfm?pid=21806&step=4&id=1586&gclid=CL6K4Zm4m8kCFZOBaQodEkwKCA https://www.metalsdepot.com/products/alum2.phtml?page=flat&LimAcc=%20&aident= http://www.jegs.com/i/Meguiar's/538/M0811/10002/-1?CAWELAID=230006180002770392&CAGPSPN=pla&cataraetid=230006180000848433&cadevice=c&gclid=Cl2i5MbAm8kC FQ6maQodDvAMvw http://www.fibreglast.com/product/Nomex_Honeycomb_1562/Vacuum_Bagging_Sandwich_Core http://www.fibrealast.com/product/Nylon Released Peel Ply 582/Vacuum Bagaing Films Peel Ply Tapes https://www.acpsales.com/Quick-Locks.html http://www.amazon.com/Copper-Sheet-Metal-12/dp/B00AKMNNX4 http://www.globalindustrial.com/p/hvac/fans/blower/global-42-portable-blower-fan-belt-drive-600554 http://www.homedepot.com/s/plywood?NCNI-5 http://www.homedepot.com/s/2+by+4+wood?NCNI-5 https://www.rockwestcomposites.com/cart

http://www.usplastic.com/catalog/item.aspx?itemid=34431&catid=705

Project Description

Design Solution

Verification & Validation

Planning

Questions?

12/1/15

Backup Slides

12/1/15

Functional Requirements

FR.1 The full-scale system shall be integrable with the Orion UAV.

FR.2 The prototype shall remove ice.

FR.3 The full-scale system shall use less than 4kW-hr to de-ice the wing section.

Aeroso

ອີນເມືອອນເ

FR.1 The full-scale system shall be integrable with the Orion UAV.

DR.1.1 The full-size system shall weigh less than **100** lb **DR.1.2** The de-icing mechanism shall be integrable with the DAE11 airfoil.

SPEC.1.2.1 The test section chord length shall be 72 in (6 ft).

DR.1.2.1 The components of the de-icing mechanism internal to the wing test section shall fit between the leading edge (0 in.) and half-chord line (36 in) in the chord-wise direction.

DR.1.3 The installation of the system shall not damage or degrade the structural integrity of the wing.

DR.1.4 The operation of the system shall not damage or degrade the structural integrity of the wing.

Functional Requirement 2

FR.2 The prototype shall remove ice.

SPEC.2.1 The prototype shall remove ice in an environment with wind speed scaled via Reynolds number to the same scale as the test section size (full-scale wind speed = 65 knots indicated).

DR.2.1 The prototype shall be capable of removing 3/8 in thick ice on test section.

SPEC.2.1.1 The ice shall cover the test section from the leading edge to 7% of the chord (7.17 in) as measured from the leading edge on the upper airfoil surface and to 2% of the chord (2.04 in) as measured from the leading edge on the lower airfoil surface.

DR.2.2 The prototype shall be capable of removing ice at any time during a five-day continuous flight.

DR.2.3 The maximum allowable thickness of ice remaining at any point along the surface of the test section after activating the prototype shall be 0.1 in.

Aeroso

Functional Requirement 3

FR.3 The full-scale system shall use less than 4kW-hr to de-ice the wing section.

DR.3.1 The prototype shall operate on an incoming 28 V DC voltage line.

DR.3.2 The full-scale system instantaneous power draw shall be at most 2 kW.

Project Description

Housing Adhesive Strength

Assume total force is applied to adhesive

Force in adhesive = 40.5 lb

 $Area = 56 in^2$

$$\tau = \frac{F}{A} = \frac{40.5}{56} = 0.72 \ psi$$

 $\tau_{Fail} = 218 \, ksi$

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Curved Test Section – Fatigue

 $\sigma_{max} = 207 MPa$

Stress in wing under normal flying conditions:

$$\epsilon = 1500 \,\mu$$

$$\sigma_{min} = E\epsilon = (41 \,GPa)(1500 \,\mu) = 61 \text{ MPa}$$

$$\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2} = 45.5 \,MPa$$

Goodman's Relation:

$$\sigma_a = \sigma_f \left(1 - \frac{\sigma_m}{\sigma_{ts}} \right) = 425 MPa \left(1 - \frac{45.5 MPa}{500 MPa} \right)$$

 $\sigma_{a,max} = 386 MPa$ Maximum allowable stress amplitude

$$\sigma_{a,actual} = \frac{\sigma_{max} - \sigma_{min}}{2} = 73 MPa$$
 Actual

Actual stress amplitude is less than maximum

Flat Plate Analysis - Video

Bird's Eye View of Ice-Hammer Test

Project Description **Design Solution** Verification & Validation

Planning

12/1/15

Housing Unit Details

Flat Plate Analysis - Fracture Toughness

$$K_{1c} = y\sigma_{max}\sqrt{\pi c_{crit}}$$

 $K_{1c} = \text{fracture toughness} = 0.109 \frac{ksi}{in^{1/2}}$ y = for edge cracks = 1 $\sigma_{max} = \text{stress in ice} = 347 \text{ psi}$

c_{crit} = length at which crack will propagate through material

$$c_{crit} = \frac{\left(\frac{K_{1c}}{y\sigma_{max}}\right)^2}{\pi} = \mathbf{0.03} \text{ in}$$

$$K_{max} = 0.308 \frac{ksi}{in^{1/2}}$$
 $K_{1c} = 0.109 \frac{ksi}{in^{1/2}}$

 $K_{max} > K_{1c}$

Crack will propagate through the ice

Electronics Specifications

Resistors: Power thin film (PF2203)

- Can withstand 2000 V at 50 W
- Price: 5 USD

Diodes: Damper & modulation (DMV1500MFD5)

- 1500 V_{RRM} (repetitive reverse peak voltage)
- 2.2 V_F (forward voltage drop)
- Price: 1.50 USD

Power Supply (for testing): HP 6521A

- 1000 V_{DC}
- 0 200 mA
- Price: 260 USD

Thyristors: TO-200AB

- 2000 V_{RRM}
- Price: 70 USD

TO-200AB (A-PUK)

Figure #. TO-200AB Thyristor

Project Description

Design Solution

Verification & Validation

Planning

Figure #. PF2203 Resistor

Figure #. DMV Diode

Testing Circuit Components

HP Agilent Harrison 6521A Power Supply

- 0-1000VDC 0-200 mA
- \$260.00

Kemet C44UQGQ6500F8SK Capacitor

- 500 µF 0 -1100 VDC
- 6000 A peak current
- 1.1 mΩ ESR

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Electronics Specifications

Capacitor: 500 µF

- Non-polarized (safe for current back flow)
- Part: 399-5954-ND DigiKey (\$140.00)

Specification	Value (in)
Diameter (D)	3.35
Height (H1)	6.93
Distance between terminals (S)	1,25
Mounting (M)	0.47x0.63

Figure ###. Capacitor dimensions from data sheet

Safety Precautions

Personal Protective Equipment

- Rubber Gloves
- Safety Glasses
- Grounded Capacitor Discharge Rod
- Long Pants
- Long Sleeves
- Closed-Toe shoes

Protective Circuitry

- Emergency Cutoff Switch
 - Cuts power from power supply
 - Grounds capacitors to discharge and prevent charging

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Safety Precautions

Personal Protective Standards

- <u>Three personnel on job at all times</u>
 - One Worker
 - Performs testing tasks
 - One Inspector
 - Reads testing checklist/procedure
 - Watches worker perform work
 - Always holds emergency cutoff switch
 - One Fire Watch
 - Gets help if situation turns dangerous
 - Stands next to fire extinguisher
- Double check that capacitors are discharged
 - Leave emergency switch tripped between tests
 - Use discharge rod and mustimeter after each test to ensure that capacitor bank is fully discharged and grounded
- Never work on system while power supply is on

Project Description

Design Solution

Verification & Validation

Planning

Safety Precautions

For High Voltage Circuit

- Never work alone, never assuming anything without checking
- Wear safety gloves and rubber bottom shoes
- Connect/Disconnect any test leads with the equipment unpowered and unplugged
- Understand the circuit in deep

For Laser

- Always work alone
- Never look directly into laser beam
- "Laser in Use" must be illuminated
- Never sit down
- Wear specific safety goggles
- Block the beam and close system shutters before turning off the laser

Solenoid Demonstration

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Software

LabVIEW Code – DAQ for Thermocouples

Project DescriptionDesign SolutionVerification & ValidationPlanning12/1/15University of Colorado Boulder Aerospace Engineering Sciences78

Phase Control Thyristor

PRODUCT SUMMARY		
Package	TO-200AB (A-PUK)	
Diode variation	Single SCR	
I _{T(AV)}	410 A	
V _{DRM} /V _{RRM}	400 V, 800 V, 1200 V, 1400 V, 1600 V, 1800 V, 2000 V	
V _{TM}	1.69 V	
lgt	90 mA	
TJ	-40 °C to 125 °C	

MAJOR RATINGS AND CHARACTERISTICS					
PARAMETER	TEST CONDITIONS	VALUES	UNITS		
have		410	A		
T(AV)	Ths	55	°C		
I _{T(RMS)}		780	A		
	Ths	25	°C		
	50 Hz	5700			
ITSM	60 Hz	5970	A		
12	50 Hz	163	k A2e		
FL .	60 Hz	149	KA-S		
V _{DRM} /V _{RRM}		400 to 2000	V		
tq	Typical	100	μs		
TJ		-40 to 125	°C		

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS							
TYPE NUMBER	VOLTAGE CODE	V _{DRM} /V _{RRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK VOLTAGE V	I _{DRM} /I _{RRM,} MAXIMUM AT T _J = T _J MAXIMUM mA			
	04	400	500				
	08	800	900				
	12	1200	1300				
VS-ST230CC	14	1400	1500	30			
	16	1600	1700				
	18	1800	1900				
	20	2000	2100				

1

Revision: 16-Dec-13

Document Number: 94398

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Phase Control Thyristor

PARAMETER	SYMBOL		TEST CON	DITIONS	VALUES	UNITS
Maximum average on-state current		180° condu	ction, half sine v	wave	410 (165)	Α
at heatsink temperature	IT(AV)	double side	(single side) co	oled	55 (85)	°C
Maximum RMS on-state current	I _{T(RMS)}	DC at 25 °C	heatsink temp	erature double side cooled	780	
		t = 10 ms	No voltage		5700	1
Maximum peak, one-cycle	124470	t = 8.3 ms	reapplied		5970	A
non-repetitive surge current	ITSM	t = 10 ms	100 % V _{RRM}		4800	
		t = 8.3 ms	reapplied	Sinusoidal half wave	5000	
		t = 10 ms	No voltage	initial T _J = T _J maximum	163	- kA ² s
	l²t	t = 8.3 ms	reapplied		148	
Maximum Int for fusing		t = 10 ms	100 % V _{RRM}		115	
		t = 8.3 ms	reapplied	14	105	
Maximum I ² √t for fusing	l²√t	t = 0.1 to 10) ms, no voltage	reapplied	1630	kA²√s
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x π	x I _{T(AV)} < I < π x	I _{T(AV)}), T _J = T _J maximum	0.92	5
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)})$), T _J = T _J maxin	num	0.98	v
Low level value of on-state slope resistance	rts	(16.7 % x π	x I _{T(AV)} < I < π x	It(Av)), TJ = TJ maximum	0.88	
High level value of on-state slope resistance	r _{t2}	$(l > \pi \times l_{T(AV)})$), T _J = T _J maxin	num	0.81	mΩ
Maximum on-state voltage	VTM	l _{pk} = 880 A,	TJ = TJ maximu	m, t _p = 10 ms sine pulse	1.69	V
Maximum holding current	lн	T - 25 80			600	mA
Maximum (typical) latching current	h.	ij=25°C,	anoue supply 1	2 v resistive i080	1000 (300)	mA

SWITCHING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum non-repetitive rate of rise of turned-on current	dl/dt	Gate drive 20 V, 20 Ω , t _r ≤ 1 µs T _J = T _J maximum, anode voltage ≤ 80 % V _{DRM}	1000	A/µs	
Typical delay time	ta	Gate current 1 A, dlg/dt = 1 A/µs V _d = 0.67 % V _{DRM} , T _J = 25 °C	1.0		
Typical turn-off time	tq	$I_{TM} = 300 \text{ A}, T_J = T_J \text{ maximum, dI/dt} = 20 \text{ A/}\mu\text{s}, V_R = 50 \text{ V}, \text{ dV/dt} = 20 \text{ V/}\mu\text{s}, \text{ gate } 0 \text{ V} 100 \Omega, t_p = 500 \text{ µs}$	100	μs	

BLOCKING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum critical rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum linear to 80 % rated V_{DRM}	500	V/µs	
Maximum peak reverse and off-state leakage current	I _{RRM} , I _{DRM}	$T_J = T_J$ maximum, rated V_{DRM}/V_{RRM} applied	30	mA	

TRIGGERING						
DID INFERE	automoti -		or occupation of	VAL	UES	Lines
PARAMETER	SYMBOL TEST CONDITIONS		ST CONDITIONS	TYP.	MAX.	UNITS
Maximum peak gate power	Paw	T _J = T _J maximum,	lp ≤ 5 ma	10.0		-
Maximum average gate power	Popul	T _J = T _J maximum,	f = 50 Hz, d% = 50	2	0	1 "
Maximum peak positive gate current	lau	T _J = T _J maximum.	t _p ≤ 5 ms	3	.0.	A.
Maximum peak positive gate voltage	+ Vow			2	10	
Maximum peak negative gate voltage	+ Voar	11 = 11 majomum, tp ≤ 5 ms		5,0		T Y
		T ₄ = +40 °C		180		
DC gate current required to trigger	lar	T_1 = 25 °C	Maximum required gate trigger/ current/voltage are the lowest value which will trigger all units 12 V anode to cathode applied	90	150	mA
		T _J = 125 *C		40	•	
		T_j = - 40 °C		2.9	•	v
DC gate voltage required to trigger	Vor	T_j=25.4C		1.6	3.0	
and the state of the second	250241	T_1 = 125 °C		1.2	•	
DC gate current not to trigger	l _{DD}		Maximum gate current/voltage not to trigger is the maximum	1	0	mA
DC gate voltage not to trigger	V60	1.1=12400000	unit with rated Volus anode to cathode applied	0.	25	v

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum operating temperature range	Tj		+ 40 to 125	-	
Maximum storage temperature range	Tag		+ 40 to 150	7 ~	
Maximum thermal resistance.		DC operation single side cooled	0.17	-	
junction to heataink	Merchia	DC operation double side coolect	0.08		
Maximum thermal resistance.	12	DC operation single side cooled	0.033	1 ~~~	
case to heatsink	Mercina	DC operation double side cooled	0.017		
Mounting force, a 10 %			4900 (500)	N (Hoj	
Approximate weight			50	0	
Case style		See dimensions - link at the end of datasheet	TO-200AB (A-PUK)	

AR _{BUC} CONDUCTION							
COMPLICTION AND F	SINUSOIDAL	CONDUCTION	RECTANGULAR CONDUCTION			110.077	
CONDUCTION ANGLE	SINGLE SIDE	DOUBLE SIDE	SINGLE SIDE	DOUBLE SIDE	TEST CONDITIONS	UNITS	
180*	0.015	0.017	0.011	0.011			
120*	0.018	0.019	0.019	0.019			
90*	0.024	0.024	0.026	0.026	$T_{2} = T_{2} \max maximum$	KW	
60*	0.035	0.035	0.036	0.036			
30*	0.060	0.060	0.060	0.061			

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Power Supply

INPUT: 115Vac ±10%, 48-440Hz, 4A, 270W,	STABILITY: Under constant ambient conditions, total drift
OUTPUT: 0-1000 Vdc, 0-200 mA.	for 8 hours following 60 minutes warm-up <u>Constant Voltage</u> : 0.036% plus 3 mV. <u>Constant Current</u> : 0.25% plus 0.5 mA.
LOAD REGULATION:	
Constant Voltage: Less than 0.005% or 20mV, whichever is greater, for a full load to no load change in output current. Constant Current: Less than 2% or 1mA, whichever is greater, for a full load to no load change in output current.	CONTROLS: Voltage controls consist of a three decade thumbwheel switch plus a thumbwheel vernier with 0,002% resolution. A single turn potentiometer controls output current.
LINE REGULATION:	METERS:
For a change in line voltage of 115Vac ±10% at any output voltage and current within rating.	Zero to 1 kV and 0-200 mA front panel meters are included. They provide accuracy of 2% full scale.
Constant Voltage: Less than 0.005% or 20mV, whichever is greater.	CALIBRATION ACCURACY: One percent of the voltage control setting, +1V.
Constant Current: Less than 1 mA.	
PARD (RIPPLE AND NOISE): At any line voltage and under any load condition within rating <u>Constant Voltage</u> : Less than 1mV rms/150mV p-p. <u>Constant Current</u> : Less than 2 mA rms.	OUTPUT IMPEDANCE: DC to 100 Hz (cps.) less than 0.01 _A . 100 Hz to 1 k Hz less than 0.02 _A . 1 k Hz to 100 k Hz less than 0.5 _A . 100 k Hz to 1 M Hz less than 3 _A .
TRANSIENT RECOVERY TIME: Less than 50 µsec is required for output voltage recovery to within 0.005% or 20 mV, whichever is greater, following a full load to no load or no load to full load change in output current.	SIZE: 5 ¹ / ₄ " H x 18" D x 19" W (standard rack width). WEIGHT:
TEMPERATURE RATINGS:	421bs. net, 631bs. shipping.
Operating: 0 to 55°C: Storage:- to +75°C.	FINISH: Light gray front panel with dark gray case.
TEMPERATURE COEFFICIENT: Output change per degree centigrade change in	
ambient following 60 minutes warm-up	
Constant Voltage: 0.012% plus (mv. Constant Current: 0.2% plus 0.2mÅ.	20

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Capacitor: C44U Series 700 – 1300 VDC

General Technical Data

Dielectric	Polypropylene Metallized Film - non inductive self-healing
Application	DC Filtering/DC Link
Climatic Category	40/85/21 IEC 60068-1
Maximum Operating Temperature	+90°C
Upper Temperature T _{MAX} Group A	+85°C IEC 61071 – Endurance Test Temperature
Upper Temperature T _{MAX} Group B	+70°C IEC 61071 - Endurance Test Temperature
Lower Temperature T _{min}	-40°C
Standard	IEC 61071
	Aluminium case with or without, threaded bolt M12
Protection	Plastic deck flame retardant execution UL 94 V=0
	Thermosetting resin sealing UL 94 V-0 compliant
Installation	Any position
Leads	High current M6 or M8 terminals
Packaging	Packed in cardboard boxes with protection for the terminals
RoHS Compliant	Compliant with the restricted substance requirements of Directive 2002/95/EC

Life Expectancy

Life Expectancy - Group A	100,000 hours at V _{NDC} @ Hot-Spot temperature T _{HS} = 85°C
Life Expectancy - Group B	100,000 hours at V_{_{\rm NDC}} @ Hot-Spot temperature T_{_{\rm HS}} = 70°C
apacitance drop at end of life	-10% (typical)
Failure Rate IEC 61709	50 FIT at V _{NDC} @ reference T _{HS} (see FIT curves)

Test Method

Test voltage between terminals	1.5 x V $_{\rm NDC}$ for 10 seconds or 1.65 V $_{\rm NDC}$ for 2 seconds at 25°C
Test voltage between terminals and case	3.2 kVAC 50 Hz for 2 seconds
Damp Heat	IEC 60068-2-78
Change of temperature	IEC 60068-2-14

Electrical Characteristics

Capacitance Tolerance	±10% at +25°C
Dissipation Factor (DF)	≤ 0.0002 at 10 kHz with T = 25°C ±5°C
Surge Voltage	1.5 x V _{NDC} for maximum 10 times in lifetime at +25°C
Over-Voltage (IEC 61071)	1.15 x V _{NDC} for maximum 30 minimum, once per day
	1.3 x V _{NDC} for maximum 1 minimum, once per day
Peak Non-Repetitive Current	1.5 x I _{per} maximum 1,000 times in lifetime
Insulation Resistance	IR x C ≥ 30,000 seconds at 100 VDC 1 minute at +25*C
Capacitance Deviation in Operation	±1.5% maximum on capacitance value measured at +25°C
Permissible Relative Humidity	Annual average ≤ 70%; 85% on 30 days/year randomly distributed throughout the year. Dewing not admissible.

Design Solution

Verification & Validation

Planning

12/1/15

Project Description

500W Resistor PF2200

Specification	Value					
Temperature Range	-55°C to +155°C : PF2202, PF2203, PF2205					
Dielectric Strength	2000 VAC	2000 VAC				
Max. Operating Voltage	$\sqrt{P*R}$ (500V MAX)					
Insulation Resistance	>1000 Meg-Ohm					
Inductance	PF2202 / PF2203 8.3	8 nH, PF2205 9.65 nH				
Environmental Performance	ΔR	Test Conditions				
Load Life	±1%	25°C, 90 min ON, 30 min OFF, 1000 hr				
Humidity Resistance	±1%	40°C, 90-95% RH, DC 0.1W, 1000 hr				
Temperature Cycle	±0.25% -55°C for 30 min, +155°C for 30 min, 5 cycles					
Solder Heat	±0.1% +350/-5°C 3s					
Vibration	±0.25%	IEC60068-2-6				

Project Description

Planning

Diode DMV1500M

Table 1: Main Product Characteristics

Table 2: Order Codes Part Number

DMV1500MFD

DMV1500MFD5

8	DAMPER	MODUL
I _{F(AV)}	6 A	3 A
VRRM	1500 V	600 V
t _{rr} (max)	135 ns	50 ns
V _F (max)	1.65V	1.4 V

Marking

DMV1500M

DMV1500M

Table 3: Absolute Maximum Ratings

Symbol	mbol Parameter -		Va	11-11	
			Damper	Modul.	Unit
VRRM			1500	600	V
IFSM	Surge non repetitive forward current	tp = 10ms sinusoidal	75	35	A
Tatg	Storage temperature range		-40 to	+150	*C
τ _i	Maximum operating junction temperature		15	50	°C

Table 4: Thermal Resistance

Symbol	Parameter	Value	Unit
R _{B(j-c)}	Junction to case thermal resistance	3.7	°C/W

Table 5: Static Electrical Characteristics

					Value				
Symbol	Parameter	Test conditions		T _i = 25°C		T, = 125°C		Unit	
				Тур.	Max.	Typ.	Max.		
1 ₈ *	Reverse leakage current	Damper	V _R = 1500 V		100	100	1000	μA	
		Modulation	V _R = 600 V		20	3	50		
V _F **	Forward voltage drop	Damper	lμ = 6 A	1,4	2.2	1.2	1.65	03	
		Modulation	I= 3 A	0	1.8	1.1	1.4	N.	
		Modulation	It = 3 A	-	1.0	1.1	1.4		

Pulse test: * tp = 5 ms, ð < 2%

 $^{\prime\prime\prime}$ to = 380 µs, $\bar{0}$ < 2%. To evaluate the maximum conduction losses of the DAMPER and MODULATION diodes use the following equations

DAMPER: P = 1.37 x IF(AV) + 0.047 x IF²(RMS)

MODULATION: P = 1.12 x + (AV) + 0.002 x + (FIMS)

Table 6: Recovery Characteristics

	00	Test conditions		Value				1
Symbol	Parameter			Damper		Modul.		Unit
	NO.			Тур.	Max.	Тур.	Max.	1.000
050	0	I _F = 100mA I _R =100mA I _{RR} = 10mA	T _j = 25°C	750		110	350	
	Neverse recovery time	I _F = 1A dlp/dt = -50 A/µs V _R =30V	Tj = 25°C	110	135	35	50	, ne

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

High Wind Speed Test - Sensors

Testing Needs:

อีนเมืออกเ

Selected Sensors:

Fan Specifications

- Diameter: 42 inches
- Price:\$300
- Volumetric Flow Rate
 - Max: 17,600 CFM
 - Min: 13,200 CFM

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Temperature DAQ

High Wind Speed Test - Process

	•Measure the wind speed at the leading edge of the wing section. •Take initial temperatures of the environment		
Initial Measure-	•Measure the ice thickness on wing section.		
ments			
	 Remove wing test section from the trough. Place the wing section inside the wind tunnel 		
	•Clamp the test section to the table to secure it down.		
Set-Up	 Place the thermocouples in the indicated places. Connect electronics to the mechanism 		
	•Ensure that everyone is inside of the ITLL.		
	Begin collecting temperature data.		
Test	Power off.		
	•Measure ice thickness after actuation of the system.		
Measure	•Measure the wind speed at the leading edge.		
	•Save data •Clean all ice that was shed.		
Clean up	•Put away all of the equipment.		
Project L	Description Design Solution Verification & Validation	Planning	/
12/1/15	University of Colorado Boulder Aerospace Engineering Sciences		88

Laser Specifications

Laser Detector Thorlabs \$302C

- IUTIODS SSUZC
 - Thermal Power Sensor
 - 0.19 25 µm
 - Sensitivity of 315.82mV/W

Laser

Low Frequency

- Laser Pointer
- High Frequency
 - Coherent DPSS 532
 Lase, 500mW

INSERT PICTURE FROM RUNNAN

Micromanometer

PVM100 Micromanometer

- Velocity Range: 0 76 m/s
- Operating Temperature: -5°C to +50°C
- Resolution: 1Pa

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Pitot Tube Probe

Dwyer 160-18 Stainless Steel Pitot Tube

- Length: 18"
- Diameter: 5/16"
- No calibration needed

Laser Specifications

Laser Detector

Thorlabs \$302C

- Thermal Power Sensor
- 0.19 25 µm
- Sensitivity of 315.82mV/W

Laser

Low Frequency

- Laser Pointer
- High Frequency
 - Coherent DPSS 532
 Lase, 500mW

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

T-Type Thermocouples

- Self-Adhesive backing for easy installation
- Response Time: <0.3 Seconds
- Length: 1 meter

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Gantt Backup Phase 1

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Gantt Backup Phase 2

Phase 2	01/28/16	03/05/16 38d		
Manufacture Housing Unit	02/03/16	02/16/16 14d	8	Test Section
Solenoid & Housing Unit Check	02/17/16	02/26/16 10d	13, 6	Solenoid/Circuit
Housing Unit Integration	02/27/16	03/04/16 7d	13, 14	Test Section
Manufacture Ice Casting Apparatus	01/28/16	02/10/16 14d	4	Testing Equipment
Confirm Ice Casting Apparatus Functionality	02/11/16	02/17/16 7d	16	Testing Equipment
Fully Integrated Test Section Ready for Testing	03/05/16	03/05/16 ~0	15, 17	
AIAA Abstract	01/28/16	02/18/16 22d		Class Deliverable
AIAA Abstract Due	02/19/16	02/19/16 ~0	19	
Test Readiness Review Prep	01/28/16	02/28/16 32d		Class Deliverable
Test Readiness Review	02/29/16	02/29/16~0	21	

 Project Description
 Design Solution
 Verification & Validation
 Planning

 12/1/15
 University of Colorado Boulder Aerospace Engineering Sciences

Phase 3	02/20/16	04/02/16 43d		
Full Assembly Test (No Ice, Static & Dynamic)	03/05/16	03/09/16 5d	15	Testing
Full Assembly Test (with Ice) Static	03/10/16	03/18/16 9d	25	Testing
Full Assembly Test (with Ice) Dynamic	03/10/16	03/18/16 9d	25	Testing
Spring Break	03/19/16	03/25/16 7d	26, 27	
Finish Full Assembly Testing	03/26/16	04/01/16 7d	28	Testing
Testing Completed	04/02/16	04/02/16 ~0	29	
AIAA Paper Prep	02/20/16	03/10/16 20d	20	Class Deliverable
AIAA Paper Due to Advisor	03/11/16	03/11/16 ~0	31	
Finalize AIAA Paper for Final Submission	03/12/16	03/24/16 13d	32	Class Deliverable
AIAA Paper Due	03/25/16	03/25/16 ~0	33	

Project Description Design Solution Verification & Validation Planning

12/1/15

Aerosp

Bringenig.

Gantt Backup Phase 4

Phase 4	04/02/16	05/03/16 32d		
Finalize Data & Results Against Models	04/02/16	04/06/16 5d	29	Class Deliverable
Spring Final Review Slides & Prep	04/02/16	04/17/16 16d	29	Class Deliverable
Spring Final Review	04/18/16	04/18/16 ~0	38	
AIAA Conference	04/21/16	04/21/16 ~0		
Final Project Report	04/07/16	05/01/16 25d	37	Class Deliverable
Final Project Report Due	05/02/16	05/02/16 ~0	41	
PROJECT COMPLETED	05/03/16	05/03/16 ~0	42	

 Project Description
 Design Solution
 Verification & Validation
 Planning

 12/1/15
 University of Colorado Boulder Aerospace Engineering Sciences

Cost Backup

Project Manager						SOURCE		
Date	Purchase	Quantity	Unit Price	Total	Ordered			
11/18/2015	Gantt Chart	6	15	90				
	·			-				
		Manufacturing						
Date	Purchase	Quantity	Unit Price	Total	Ordered			
11/18/2015	Low Density Polyeth	1	7.25	7.25		http://www.tapplastics.com/product/plastics/plastic_sheets_rolls/ldpe_sheets/410		
11/18/2015	Acrylic Sheet	1	45.76	45.76		http://www.onlinemetals.com/merchant.cfm?pid=21806&step=4&id=1386&gclid=CL6K42m4m8kCFZOBaQodEkwKCA		
11/18/2015	Aluminum Block	1	66.36	65.36		https://www.metalsdepot.com/products/alum2.phtml?page=flat&LimAcc=%20&aident=		
11/18/2015	11 oz mold release v	1	16	16		http://www.jegs.com/i/Megular's/538/M0811/10002/-1?CAWELAID=230006180002770392&CAGPSPN=pla&catargetid=		
11/18/2015	Nomex honeycomb	1	120	120		http://www.fibreglast.com/product/Nomex_Honeycomb_1562/Vacuum_Bagging_Sandwich_Core		
11/18/2015	Foam for Molds	1	2	2				
11/18/2015	1 Peel Ply Roll	1	13.45	13.45		http://www.fibreglast.com/product/Nylon_Released_Peel_Pfy_S82/Vacuum_Bagging_Films_Peel_Pfy_Tapes		
11/18/2015	Quick Lock Seals	2	35	72		https://www.acpsales.com/Quick-Locks.html		
11/18/2015	Copper Sheet Metal	1	17	17		http://www.amazon.com/Copper-Sheet-Metal-12/do/800AKMNNX4		
11/18/2015	Fan	1	300	300		http://www.globalindustrial.com/p/hvac/fans/blower/global-42-portable-blower-fan-belt-drive-600554		
11/18/2015	Plywood	3	11.97	35.91		http://www.homedepat.com/s/plywood?NCNI-5		
11/18/2015	2 x 4 x 96	10	2.48	24.8		http://www.homedepot.com/s/2+by+4+wood7NCNI-5		
11/20/2015	Carbon Fiber PrePre	0	34.6	0		https://www.rockwestcomposites.com/cart		
11/22/2015	Self-Adhesive Them	2	64	128		http://www.omega.com/pptst/SA1.html		
11/22/2015	Pitot Tube	1	75	75		http://www.gualityinstruments-direct.com/product/dwyer-160-18-pitot-tube-velometer-18-inches		
11/29/2015	3M Scotch - Weld Ep	1	52.5	52.5		https://dragonplate.com/ecart/cartView.asp?rp=product%2Easp%3FpID%3D699		
11/29/2015	LDPE Sheet	1	24.51	24.51		http://www.usplastic.com/catalog/item.aspx?itemid=34431&catid=705		
music franciscular point a lo			0.0100	and the part of the				
			Total	1000.54				
	2	Electro	onics	and the second s				
Date	Purchase	Quantity	Unit Price	Total	Ordered			
11/18/2015	Power Supply	1	200	200				
11/19/2015	Ribbon Wire	100	1.5	150				
11/19/2015	Ribbon Wirte	100	1.5	150				
11/20/2015	Shipping Costs Wire	1	60	60				
11/20/2015	Diode Damper and s	1	36.86	36.86		NEED TO SUBMIT FOR REIMBURSEMENT FOR KELLY		
11/20/2015	Digi Key Order	1	276.19	276.19		Digikey invoice 51564671		
11/25/2015	Home Depot	1	18.02	18.02		Home depot receipt (Space Vinyl, 14 -2AWG Alum, PVC coated gloves, electrical tape)		
11/29/2015	ELECTRONICS MARG	1	1000	1000				
			Total	1891.07				
		(
				Total	3982.15			
					distant in			

Project Description

Design Solution

Verification & Validation

Planning

12/1/15

Cost Backup Sources

https://dragonplate.com/ecart/cartView.asp?rp=product%2Easp%3FpID%3D699 http://www.usplastic.com/catalog/item.aspx?itemid=34431&catid=705 http://www.omega.com/pptst/SA1.html http://www.qualityinstruments-direct.com/product/dwyer-160-18-pitot-tube-velometer-18-inches http://www.thorlabs.us/newarouppage9.cfm?objectgroup_id=3333&pn=S302C https://www.coherent.com/products/?765 http://www.tapplastics.com/product/plastics/plastic_sheets_rolls/ldpe_sheets/410 http://www.onlinemetals.com/merchant.cfm?pid=21806&step=4&id=1586&gclid=CL6K4Zm4m8kCFZOBaQodEkwKCA https://www.metalsdepot.com/products/alum2.phtml?page=flat&LimAcc=%20&aident= http://www.jeas.com/i/Meguiar's/538/M0811/10002/-1?CAWELAID=230006180002770392&CAGPSPN=pla&cataraetid=230006180000848433&cadevice=c&aclid=Cl2i5MbAm8kC FQ6maQodDvAMvw http://www.fibreglast.com/product/Nomex Honeycomb 1562/Vacuum Bagging Sandwich Core http://www.fibreglast.com/product/Nylon_Released_Peel_Ply_582/Vacuum_Bagging_Films_Peel_Ply_Tapes https://www.acpsales.com/Quick-Locks.html http://www.gmazon.com/Copper-Sheet-Metal-12/dp/B00AKMNNX4 http://www.globalindustrial.com/p/hvac/fans/blower/global-42-portable-blower-fan-belt-drive-600554 http://www.homedepot.com/s/plywood?NCNI-5 http://www.homedepot.com/s/2+bv+4+wood?NCNI-5 https://www.rockwestcomposites.com/cart

http://www.usplastic.com/catalog/item.aspx?itemid=34431&catid=705

Project Description

Design Solution

Verification & Validation

Planning

12/1/15