

Chiveisity of Colorado at Doulder

<u>Actuated Electromagnetic System for Ice Removal</u>

Preliminary Design Review October 20, 2015

 Customers: Aurora Flight Sciences Ellis Langford, Ed Wen
 Advisor: Joe Tanner

 Kelly Allred
 Jacquie Godina
 Andrew Moorman

 Jonathan Eble
 Andre Litinsky
 Libby Thomas

 Nicole Ela
 Runnan Lou
 Colin Zohoori

Project Description

- Problem Statement
- Concept of Operations

Baseline Design

- Design Details
- Functional Block Diagram

Feasibility

- Critical Project Element 1: Modeling Feasibility
- Critical Project Element 2: Mechanism Design Feasibility
- Critical Project Element 3: Testing Feasibility

- Design Recap
- Cost
- Schedule

Project Description

Project Description

Baseline Design

Baseline Feasibility

Background

Problem: Ice buildup on aircraft wings in flight

- Decreases Lift-to-Drag Ratio (L/D)
- Freezes control surfaces
- Reduces mission capabilities
- In extreme cases can result in a crash

Currently: Several solutions exist with various limitations

- Thermal
- Pneumatic
- Electro-mechanical
- Chemical

However, solutions predominately for piloted aircraft

• Limited implementation on UAVs

Figure 1. Ice formation on wing.¹

Figure 2. Pneumatic de-icing on piloted aircraft.²

Project Description

Baseline Design

Baseline Feasibility

Purpose of AESIR:

- De-icing solution intended for unique constraints of the Orion UAV system
 - Orion designed to fly for 5 days at 20,000 ft at 65 KIAS
 - Mission limited by icing conditions

Problem Statement: Design, build, and test a small-scale prototype of a de-icing system for the Orion UAV.

Figure 3. Orion UAV³

Baseline Design

Baseline Feasibility

Functional Requirements

- **FR.1** The full-scale system shall be integrable with the Orion UAV.
- **FR.2** The prototype shall remove ice on wing section.
- FR.3 The full-scale system shall use less than 4 kWh to de-ice the wing section.
- **FR.4** Integration of the de-icing mechanism with the test section shall not decrease L/D of the test section by more than 10%.

Mission Concept of Operations

Project Concept of Operations

Baseline Design

Project Description

Baseline Design

Baseline Feasibility

Selection of Baseline Design

Table 1. Design Selection Trade Study

Criteria	Weight	Electro- Magnetic	Thermo- Electric	Chemical	Pneumatic	Ultrasonic
Energy Occupancy	35%	7	1	10	10	6
Weight	30%	8	8	1	1	4
Cost	15%	10	10	7	4	8
Technology Readiness Level	10%	8	10	10	10	4
Difficulty & Complexity	10%	4	7	5	8	2
Total	100%	7.55	5.95	6.35	6.2	5.1

Project Description

Baseline Design

Baseline Feasibility

Solenoid Theory

Using electromagnets to generate large forces:

Test Section Design

Integrated Design

10/20/2015

University of Colorado Boulder, Aerospace Engineering Sciences

Functional Block Diagram

University of Colorado Boulder, Aerospace Engineering Sciences

Design Feasibility

Project Description

Baseline Design

Baseline Feasibility

Critical Project Elements

CPE #2

CPE #1

Force and Stress Models

- Calculate force required to break ice
- Model to ensure force required does not cause structural damage

Mechanism Design

- Calculate solenoid
 parameters required
- Parameters must remain within constraints

CPE #3

Testing

- Manufacture test section
- Cast ice
- Dynamic Testing

Project Description

Baseline Design

Baseline Feasibility

CPE 1: Modeling Feasibility

Relevant Requirements

FR.1 The f	ull-scale system shall be integrable with the Orion UAV.
DR.1.3	The installation of the system shall not damage or degrade the structural integrity of the wing.
DR.1.4	The operation of the system shall not damage or degrade the structural integrity of the wing.
FR.2 The p	rototype shall remove ice from wing section.
DR.2.1	The prototype shall be capable of removing ice built-up to 0.36 in thick on test section.
SPEC.2.1.1	The ice shall cover the test section from the leading edge to 7% chord on the upper surface and 2% on the lower surface.

CPE 1: Proof of Feasibility

Ice-Rupture Force Model Assumptions

Assumptions

- Volume of ice on top & bottom surfaces = 2 independent flat plates
- Uniform thickness of ice (0.375 in)
- Chord = 36 in; Span = 24 in; Flat plate length = arc length
- Ice acts as brittle material
 - Force to crack ice = force to achieve modulus of rupture

Ice-Rupture Force Determination

Structural Integrity Feasibility

- Crack will propagate through thickness on formation
- Force of solenoid acts at single point

Project Status

= Carbon Fiber

Ice-Rupture Force Model

Ice-Rupture Force Model

Calculate force required to crack the ice using 3-pt loading

Structural Integrity Model

Force required to break ice must not damage structure of wing surface

Model force on wing using beam analysis with boundary conditions

Figure 14. Carbon fiber wing test section.

Further Assumptions for Beam Analysis

- Straight carbon fiber beam
- Leading edge \rightarrow simple support
- Boundary \rightarrow fixed support
- Force acts perpendicular at single point in center of 2D beam
- Material uniform thickness (both upper and lower beam models) = 0.08 in

Figure 15. Carbon fiber wing test section with beams.

Project Description

Leading Edge

Carbon Fiber

Baseline Design

Baseline Feasibility

Structural Integrity Model (cont.)

Analyze internal forces to prove feasible

Upper Surface FBD for Carbon Fiber Beam Analysis $l_{\mu} = 7\% chord$	Equations	s for given	She	ear Stress		$\tau = \frac{F - R_{AZ}}{A} = \frac{F}{b}$	$\frac{-R_{Az}}{2 \cdot h}$
	Boundary	Conditions	Ber	nding Mo	ment	$M_{b,max} = -0.19$	924 <i>FL</i>
$LE = L_U/2 F h = 0.08 in$	Safety Fa $\sigma_{allowable}$	$ctor = 1.7$ $\sigma_i = \sigma_i / FOS$	Ma Ber	x Stress finding	rom	$\sigma_{max} = \frac{\binom{h}{2} \cdot M}{I}$	b,max
			Imp	oulse Stre	SS	$\sigma_i = 2\sigma_{ma}$	2x
1 = 70 chard 1	Property	Calculated Stress	[ksi]	Relation	Max A	llowable Stress [ksi]	Feasible?
$R \qquad P$	$ au_U$	0.286		<		7.68	YES
$X \longleftrightarrow M_{BZ} \longrightarrow M_{BZ}$	$ au_L$	0.286		<		7.68	YES
$LE \begin{bmatrix} R_{Ax} \\ F \end{bmatrix} = \begin{bmatrix} R_{Bx} \end{bmatrix}^{NB}$	σ_U	17.0		<		51.2	YES
$a = L_U/2$	σ_L	4.91		<		51.2	YES
Project Description Baseline	Design	Baseli	ne Fe	easibility		Proiect Statu	s

CPE 1: Modeling Feasibility Conclusions

CPE 1 – Model the force required to break ice off wing test-section surface

CPE 2: Mechanism Design Feasibility

Relevant Requirements

FR.1 The	full-scale system shall be integrable with the Orion UAV.
DR.1.1	The full-scale system shall weigh less than 100 lb.
DR.1.2	The de-icing mechanism shall be integrable with a DAE11 airfoil.
DR.1.2.1	The test section chord shall be 36 in.
DR.1.2.2	The internal components of the de-icing mechanism shall fit between the leading edge and half chord
FR.2 The	prototype shall remove ice on wing section.
DR.2.1	The prototype shall be capable of removing ice built-up to 0.36 in thick on test section.
SPEC.2. 1.1	The ice shall cover the test section from the leading edge to 7% chord on the upper surface and 2% on the lower surface.

CPE 2: Mechanism Design Feasibility

Relevant Requirements

FR.3 The full-scale system shall use less than 4kW-hr to de-ice the wing section.

DR.3.2 The full-scale system instantaneous power draw shall be at most 2 kW.

CPE 1: Proof of Feasibility

Baseline Concept

- Basic copper coil solenoid
- Force dependent on various parameters
- To <u>increase</u> force:
- Large current (I)
- Many coil turns (N)
- Large diameter (D)

Project Description

• Small gap distance (d)

Baseline Design

Solenoid Properties Calculations

Subject: Bottom solenoid must generate F = 231.4 lb_f

Bottom requires more F than top, analysis to see if larger F is ٠ achievable

Assumptions:

- D = 2.5 in | d = 0.02 in | t = 12 AWG copper wire •
- No energy loss due to heat & structural absorption
- Negligible magnetic field interaction between solenoids
- Instantaneous current draw

Dependent Variables:

- N- # of turns •
- I- Current draw from power source •

Baseline Design

Figure 18. Length vs Current of solenoid.

Baseline Feasibility

Project Status

Project Description

Solenoid Properties Calculations

Figure 19. Volume vs Current of solenoid.

Figure 20. # of Turns vs Current of solenoid.

Current [A]

20

15

of Turns vs. Current

Baseline Design

Baseline Feasibility

10

Project Status

25

N = 15 turns

30

Solenoid Properties Summary

Figure 21. Weight vs Current of solenoid.

Solenoid Requirements to generate $F = 234.06 \ lb_f$:

Property	Value
Diameter – D	2.5 in
Distance – d	0.02 in
Thickness of wire – t	12 AWG (0.0808 in)
Length – L	1.2 in
Instantaneous Current – I	24.4 A
Volume – V	5.89 in ³
# of turns – N	15
Weight - W	0.2 lb _f

Baseline Design

Baseline Feasibility

Solenoid Integration Feasibility

Basic solenoid design can achieve force required but does not fit volume constraints

• Limited by safe current, wire gauge, and leading edge integration constraints

Note: Calculations done for bottom solenoid since bottom surface requires greater force and has more stringent integration constraints

Property	Basic Solenoid	Size Limitations
Diameter – D	2.5 in	Bottom Solenoid: 0.75 in
Length – L	1.2 in	Bottom Solenoid: 1.25 in

To make feasible, considering different solenoid designs:

- 1. Magnetic core solenoid design
- 2. Rectangular solenoid
- 3. Test section change

Solenoid Integration Feasibility

- Magnetic core solenoid design 1.
 - Adding magnetic core to basic solenoid increases strength of magnetic field, increases F produced
 - Decrease size and/or change shape of solenoid •
 - Different core shapes: E-core transformer ٠

- Change shape of solenoid to better fit integration constraints ٠
- Ribbon wire solenoid

Figure 22. E-core.¹³

Figure 24. Rectangular solenoid diagram on test section.

Baseline Feasibility

Solenoid Integration Feasibility

- 3. Test Section change
 - Test section scale selected as half
 - Test section chord = 3 ft
 - Orion chord = 6 ft
 - Increase test section chord to ease integration constraints
 - Solenoids do not scale linearly so test section represents more stringent integration constraints than a large scale system would have

CPE 2: Mechanism Design Feasibility Conclusions

CPE 2 – **Design the mechanism to achieve required force and fit integration and power constraints**

CPE 3: Testing Feasibility

Relevant Requirements

FR.1 The full-	-scale system shall be integrable with the Orion UAV.		
DR.1.2	The de-icing mechanism shall be integrable with a DAE11 airfoil.		
DR.1.2.1	The test section chord shall be 36 in.		
FR.2 The prototype shall remove ice on wing section.			
DR.2.1	The prototype shall be capable of removing ice built-up to 0.36 in thick on test section.		
SPEC.2.1.1	The ice shall cover the test section from the leading edge to 7% chord on the upper surface and 2% on the lower surface.		
SPEC.2.1.2	The prototype shall remove ice in an environment with wind speed \geq 12 knots indicated.		

CPE 1: Proof of Feasibility

Test Section Manufacturing Interior Plates

Several options for manufacturing target metal plates:

- Manufacturing plate as one continuous piece
- Connecting smaller, flat pieces with aluminum tape (aluminum optional, must be a conductive adhesive)

• Replacing the plates with layers of aluminum foil

Figure 28. Interior view of ferromagnetic plates beneath leading edge

Project Description

Baseline Design

Baseline Feasibility

Ice Casting

Subject - Ice application on test section

- Ice thickness = 0.375 in, uniform
- Ice surface area coverage = 7% of chord on top surface and 2% chord on lower surface (measured from LE)

Method - Ice casting

- Trough structure ice mold
- Trough coated with smooth material to prevent ice adhering to mold
- End caps engraved with shape of airfoil to hold test section in place

Results

- Method used in industry
- Procedure for casting
- Design for ice mold
- Preformed small scale ice casting test

Figure 29. Ice casting assembly diagram.

Project Description

Baseline Design

Baseline Feasibility

Small Scale Casting Test

- Performed Ice casting method on carbon fiber tube:
 - Put tube in cup of water
 - Put in freezer
 - Removed assembly from freezer
 - Ran hot water on outside of cup
 - Removed test section from cup

Figure 30. Ice cast on carbon fiber tube.

Figure 31. Ice cast on carbon fiber tube.

Baseline Design

Baseline Feasibility

had a shad a shad a shad

Ice

Carbon fiber

skin

Ferromagnetic

Testing Feasibility

Plan to test model assumptions and design functionality

Preliminary Ice Removal Test

- To occur before CDR to verify assumptions made about the designs and models
- Consists of 1 solenoid, ferromagnetic metal plate, carbon fiber
- Measure: propagation of ice cracks, displacement of carbon fiber during actuation, power draw

Later Testing

- Will include ice removal testing with wind and no wind
- Accessible resources:

CPE 3: Testing Feasibility Conclusions

CPE 3 – Testing to verify design functionality and models

Project Status

Project Description

Baseline Design

Baseline Feasibility

Recap of Design

- Force from solenoids can remove ice
- Calculated force will not damage carbon fiber skin
- Pursuing alternate solenoid designs for integration
- Test section can be manufactured
- Ice can be cast to the test section

Project Description

Baseline Design

Baseline Feasibility

Cost Budget

Total Cost: \$1,816.73

10/20/2015

University of Colorado Boulder, Aerospace Engineering Sciences

Schedule

Project Description

Baseline Design

Baseline Feasibility

Ice Removal Test Schedule

³"AURORA ORION UAV COULD CUT ISR COSTS 80%," Aerospace Blog, 30 Nov. 2010, URL: https://aerospaceblog.wordpress.com/2010/11/30/1747 [cited 11 Oct. 2015]. ⁴"Eddy Current," URL: http://www.acndt.com/images/EddyCurrentPic1.jpg [cited 10 Oct. 2015].

⁵Ashby, M. F., and David R. H. Jones. Engineering Materials 2: An Introduction to Microstructures, Processing, and Design. 1st ed. Vol. 39. Oxford: Pergamon, 1986. Print. ⁶Chamis, Christos C. "NASA TECHNICAL NOTE." ANALYSIS OF THE THREE-POINT-BEND TEST FOR MATERIALS WITH UNEQUAL TENSION AND COMPRESSION PROPERTIES (1974): n. pag. NASA. Web.

⁷ Roark, Raymond J., and Warren C. Young. *Roark's Formulas for Stress and Strain*. 7th ed. New York: McGraw-Hill, 1989. Print.

⁸ Roark, Raymond J., and Warren C. Young. *Roark's Formulas for Stress and Strain*. 7th ed. New York: McGraw-Hill, 1989. Print.

⁹ Hibbeler, Russell C. *Mechanics of Materials*. Upper Saddle River, NJ: Pearson Prentice Hall, 2007. Print.

¹⁰ Roark, Raymond J., and Warren C. Young. *Roark's Formulas for Stress and Strain*. 7th ed. New York: McGraw-Hill, 1989. Print.

¹¹"Solenoid-1," 2008, URL: https://commons.wikimedia.org/wiki/File:Solenoid-1.png [cited 12 Oct. 2015].

¹²"Solenoid (Electromagnet) Force Calculator." Solenoid (Electromagnet) Force Calculator. N.p., n.d. Web. 13 Oct. 2015.

¹³"Electronics Fundamentals: Transformer," 2015, URL: http://www.jameco.com/Jameco/workshop/learning-center/transformer.html [cited 12 Oct. 2015]. ¹⁴"Ribbon Solenoid," [cited 12 Oct. 2015].

Questions?

Backup Slides

- **FR.1** The full-scale system shall be integrable with the Orion UAV.
 - **DR.1.1** The full-scale system shall weigh less than 100 lb.
 - **DR.1.2** The de-icing mechanism shall be integrable with a DAE11 airfoil.
 - **DR.1.2.1** The test section chord shall be 36 in.
 - **DR.1.2.2** The internal components of the de-icing mechanism shall fit between the leading edge and half chord
 - **DR.1.3** The installation of the system shall not damage or degrade the structural integrity of the wing.
 - **DR.1.4** The operation of the system shall not damage or degrade the structural integrity of the wing.

- FR.2 The prototype shall remove ice.
 - **DR.2.1** The prototype shall be capable of removing ice built-up to 0.36 in thick on test section.
 - **SPEC.2.1.1** The ice shall cover the test section from the leading edge to 7% chord on the upper surface and 2% on the lower surface.
 - **DR.2.2** The prototype shall be capable of removing ice at any time during a five-day continuous flight.
 - **DR.2.3** The maximum allowable thickness of ice remaining at any point along the surface of the test section after the activation of the system shall be 0.1 in.

- **FR.3** The full-scale system shall use less than 4kW-hr to de-ice the wing section.
 - **DR.3.1** The prototype shall operate on an incoming 28 V DC voltage line.
 - DR.3.2 The full-scale system instantaneous power draw shall be at most 2 kW.
- **FR.4** Integration of the de-icing mechanism with the test section shall not decrease the Lift to drag ratio of the test section by more than 10%.

Deflection Model Assumptions

Assumptions

- Ice will break in tension by modulus of fracture
- Ice will elongate by *e* in the x-axis
- Deflection of ice in the z-axis (δ) is determined by modeling ice as 2 flat plates

- Carbon fiber and ice will have the same deflection
- Force applied to carbon fiber is the force required to generate deflection

Deflection of Ice

Maximum tensile force: $F_{tension} = \sigma_{fracture} \cdot L \cdot d$

Young's Modulus of Ice: $E = 1 \cdot 10^3 ksi$

Cross-sectional area: $A = d \cdot L$

Elongation of Ice:	$e = \frac{F_{tension} \cdot L}{E \cdot A}$
Deflection of Ice:	$\delta = \sqrt{\left(\frac{L}{2} + \frac{e}{2}\right)^2 - \left(\frac{L}{2}\right)^2}$

Surface	Maximum Tensile Force	Cross-sectional Area	Elongation of Ice	Deflection of Ice
Upper	154.53 <i>lb</i>	$4.5 in^2$	$4.12 * 10^{-4}$ in	0.0497 in
Lower	44.44 <i>lb</i>	$4.5 in^2$	$1.19 * 10^{-4}$ in	0.0267 in

Deflection of Wing Surface

Force to generate deflection δ

Bending moment from force F

Maximum Stress from Bending

 $F = \frac{\delta(3EI(3L^2 - a^2)^2)}{a(L^2 - a^2)^3}$ $\sigma_{max} = \frac{L \cdot M_{b,max}}{I}$

Property	Maximum Stress from Bending (ksi)	Relation	Max Allowable Stress (ksi)	Feasible?
$ au_U$	45.6	>	7.68	NO
$ au_L$	23.4	>	7.68	NO
σ_U	749	>	51.2	NO
σ_L	402	>	51.2	NO

 $E = 46.4 \cdot 10^3 \, ksi$

$$I = \frac{bh^3}{12} = 5.12 \cdot 10^{-4} \ in^4$$

Fatigue Limit

Time between de-icing: 60 seconds^A

Number of pulses to remove ice: **3 pulses**

Lifetime requirement of de-icing mechanism: 3% of lifetime of aircraft = $0.03 \cdot 5000 = 150$ hrs

Total number of cycles required for lifetime of system:

 $150 hr\left(\frac{60 min}{1 hr}\right) \left(\frac{3 pulses}{1 min}\right) = 2.7 \cdot 10^4 cycles$

Stress amplitude (σ_a): cyclic stress loading below which material will not fail before 10^7 cycles

For carbon fiber:

 $\sigma_a = 14\% \cdot \sigma_{allowable} = 7.17 \ ksi$

$$\sigma_{U,calc} = 17.0 \ ksi \longrightarrow \sigma_{U,calc} > \sigma_{a}$$

$$\sigma_{L,calc} = 4.91 \ ksi \longrightarrow \sigma_{L,calc} < \sigma_{a}$$

The upper surface will fail before 10^7 cycles. However, only 10^4 cycles are needed – 3 orders of magnitude less

Height Constraint = 1.25 in

Rectangular Solenoid Properties Calculations

Subject: Bottom solenoid must generate F = 231.4 lb_f

Bottom requires more F than top, analysis to see if larger F is achievable

Assumptions:

- A = 3 in² | d = 0.5 mm | t = 12 AWG copper wire
- No energy loss due to heat & structural absorption
- Negligible magnetic field interaction between solenoids
- Instantaneous current draw
- Weight of housing unit and electrical components neglected for now

Dependent Variables:

- N # of turns
- I Current draw from power source

Baseline Design

Baseline Feasibility

3.5

3

Height [in] 5 5

1.5

0.5

10

15

20

25

Current [A]

Project Status

35

Height vs. Current

Height = wire thickness(t) * N

Height Constraint: 1.25 in

I = 30.0 A

30

40

45

Rectangular Solenoid Properties Calculations

Baseline Design

Baseline Feasibility

Rectangular Solenoid Properties Summary

Solenoid Requirements to generate *F* = 231.4 *lb*_{*f*} :

Property	Value
Cross Sectional Area – A	3 in ²
Distance – d	0.0394 in (0.5 mm)
Thickness of wire – t	12 AWG (0.0808 in)
Height – h	1.25 in
Instantaneous Current – I	30.0 A
Volume – V	3.75 in ³
# of turns – N	15.5
Weight - W	0.24 lb _f

Project Description

Baseline Design

Baseline Feasibility

Cost Budget (Backup)

Item	Amount	Cost per	Total Cost
Composite Materials			
Carbon Fiber	1	\$170.00	\$170.00
Peel Ply	1	\$37.00	\$37.00
Breather	1	\$25.00	\$25.00
Vacuum Bag	1	\$35.00	\$35.00
Nomex Honeycomb	1	\$120.00	\$120.00
Quick Lock Seals	1	\$36.00	\$36.00
EPS Foam	1	\$21.00	\$21.00
Flexible Polyethyline	1	\$20.00	\$20.00
Layup Foam	3	\$32.60	\$97.80
Resin and Hardner	1	\$93.00	\$93.00
Thin Plyable Plastic	1	\$6.90	\$6.90
Bees Wax	1	\$5.00	\$5.00
Fastners	1	\$6.47	\$6.47
Silicone Sealent	1	\$3.98	\$3.98
Wood	1	\$34.95	\$34.95
		Total Section Cost	\$712.10
Metal Materials			
Metal to Composite Epoxy	1	\$62.00	\$62.00
Alclad 2024-T3	1	\$30.13	\$30.13
		Total Section Cost	\$92.13
Electrical Materials			
Solenoids	4	\$200.00	\$800.00
Wire	4	\$8.25	\$33.00
Capacitors	1	\$70.00	\$70.00
Arduino	1	\$25.00	\$25.00
Transformer	1	\$4.50	\$4.50
Power inverter	1	\$80.00	\$80.00
		Total Section Cost	\$1,012.50
		TOTAL COST	\$1,816.73
Project Description Baseline De	esign	Baseline Feasibility	> Project Statu

University of Colorado Boulder, Aerospace Engineering Sciences

Mass Budget

Mass budget for full-scale Orion UAV assumes...

- 1 ft distance between solenoids on upper & lower surfaces
- 8 solenoids per circuit (1 circuit every 4 ft in spanwise direction)

Item	Weight for 1 Item [lb]	Quantity	Total Weight for Item(s) [lb]
Upper solenoid	0.25	125	31.5
Lower solenoid	0.25	125	31.5
Copper Wire (Upper & Lower Surface, Full Span) ^[A]	24.33	1	11.4
Aluminum Patch (Top & Bottom = 1 set)	0.35	65	21.9
Arduino	Negligible	1	0
DPDT	Negligible	1	0
Charger ^[B]	0.2	1	0.2
Total weight for full-scale system:			81.5 lb
Max Weight Full-Scale = 100 lb →		81.48% of Allowable Weight Used	

Power Budget

Find Total Energy Consumption

Assumptions

- 2 kw battery over 2 hours flight, 2 ft wing span test section
- Linear ice formation (3''/hour), $0.36''/t_f = 0.36''/432$ s
- Linear power distribution along the wing, $P_s = 15.15 \text{ W/ft}$
- 4 solenoids produce the same force
- 1mm deflection of bending on the metal plate
- 3 pulses as a working cycle shall remove ice completely
- 10 % of charging and discharging efficiency

Total energy required: $E = 3N\epsilon_T + \epsilon_a \approx 3N\epsilon_T$

Energy occupation ratio (3 pulses as 1 working cycle): $\lambda = \frac{1}{1 + \frac{P_S t_f}{3\epsilon_T}} = 16.0\%$

Project Description
Baseline Design
Baseline Feasibility

Project Status

 ϵ_a : 0.465 J

 ϵ_c : 83.20 J

 ϵ_T : 832 J

Power Budget Calculations

Arduino over 2 hours: $\epsilon_a = V_a It = 5V * 46mA * 2h = 0.465 J$

Energy stored in capacitor (1 pulse):

$$\epsilon_c = \epsilon_{eff} + \epsilon_{loss} = \eta \epsilon_c + (1 - \eta) \epsilon_c$$

For η = 10% (4 solenoids):

$$\epsilon_c = \frac{\epsilon_{eff}}{\eta} = \frac{\eta C V^2}{2\eta} = \frac{2Fd}{\eta} = 10 * 2 * (1041.15 N * 4) * 1mm = 83.2 J$$

Total energy for charging a capacitor ($\eta = 10\%$) :

Circuit Diagram

Mechanism Availability

Commercially available solenoids

Solenoids and inductors are readily available for purchase in thousands of variations.

Relatively cheap ~ \$100

Low lead time

Manufacturing Materials Access

- Structural materials such as carbon fiber fabric, Nomex[®] Honeycomb, epoxy, and aluminum are all available to order online.
- Layup materials such as peel ply, breather, vacuum bags, and quick lock seals are also available online.

Ice Casting Details

Assumptions:

- Ice will expand in the path of least resistance.
- Team will not fill trough completely to allow for ice expansion and avoid cracks in the ice.

Feasibility Results:

- The trough can be manufactured a long with the two end caps.
- Price = \$21 (EPS Foam) + \$20 (bendable plastic, smooth layer) = \$41

Both cost and manufacturing are possible with the resources that the team has. This means that ice casting is a feasible aspect of our project.

End cap with engraved DAE 11

