<u>Smallsat Connected Optical</u> <u>Positioning Entity</u>

Manufacturing Status Review

Customer: Steve Thilker, Raytheon **Faculty Advisor:** Zoltan Sternovsky

Group Members: Mattia Astarita, Nick Cenedella, Connor Kerry, Greg Kondor, Nolan Lee, Guy Margalit, Mason Markle, Jakob Mitchell, Zach Schira, Pepe Feu Vidal, Alec Viets

Presentation Outline

Sections	Presenter(s)
Project Description	Nick
Schedule	Mason
Manufacturing: Mechanical	Alec and Greg
Manufacturing: Software	Zach and Guy
Manufacturing: Electrical	Guy
Budget	Nolan

Overview

Project Objectives

Design, build, and test a proof-of-concept sensor package that collects **relative motion** and **orientation** data of a TARGET satellite for output to the CHASE satellite on-board attitude control system.

Levels of Success

Level 1: Detect and return data outputs for a target satellite with known markers.

Level 2: Detect and return data outputs of a target satellite with no markers, but with a known 3-D model.

Overview

Schedule

Level 3: Detect and return data outputs of an unknown target satellite

Functional Block Diagram

Critical Project Elements

Centroid Determination

 Use Background Subtraction to Detect TARGET.
Return Location in FOV for determining ADCS turning angles. Position and Velocity Determination

 Gather and smooth distance of TARGET data from laser rangefinder.
Return position and velocity of TARGET satellite.

Four main CPE's define

SCOPES largest challenges

Orientation and Roll rate Determination

 Return orientation of TARGET within 1 deg of actual.
Return angular rates of TARGET within 1% of actual. **1-U Satellite Constraints**

Mass is less than 1.33[kg]
Dimensions fit within 10x10x10[cm]
Data is written at a rate faster than 2[Hz]
Average power remains below 20W

Overview Schedule Manufacturing

Baseline Design

Project Schedule

Manufacturing Schedule Overview

							January		February	March		Apr	il		May
ID	Hardware Task	Duration	Start	End	Margin (±)	Week:	1 2 3	4 5	6 7	8 9 10 11	12 13 Spring	14	15 16	17	18
1-h	SCOPE Front Face	2 Days	02/01/2018	02/02/2018	1 Day	1		1-h			Break				
2-h	SCOPE Top	1 Day	02/02/2018	02/02/2018	1 Day			2-h							
3-h	SCOPE Back	2 Days	02/05/2018	02/06/2018	1 Day			3-h							
4-h	SCOPE Left Face	2 Days	02/07/2018	02/08/2018	1 Day			4-h					Completed / On s	Schedule	,
5-h	SCOPE Bottom Face	2 Days	02/08/2018	02/09/2018	1 Day			5-					Concorned / Bob	and Sobo	dula
6-h	SCOPE Right Face	1 Day	02/12/2018	02/12/2018	1 Day	1			6-h				Concerned / Ben	lind Sche	dule
7-h	TEST STAND Left Arm	2 Days	01/22/2018	01/23/2018	1 Day	1	7-h		-				Task		
8-h	TEST STAND Right Arm	2 Days	01/22/2018	01/23/2018	1 Day	1	8-h								
9-h	TEST STAND Mounting Plate	2 Days	01/31/2018	02/01/2018	1 Day	1		9-h					Margin (±)		
0-h	TEST STAND Bottom Arm	7 Days	02/01/2018	02/06/2018	2 Days			10-h					External Dep	penden	icy
1-h	TEST STAND Key(x2)	3 Days	02/12/2018	02/14/2018	1 Day				1-h			1 <u>1</u>	Internal Dep	benden	icy
2-h	TEST STAND Rods	1 Day	02/14/2018	02/14/2018	1 Day				12-h			'			·
13-h	TARGET STAND Bottom Plate	1 Day	02/20/2018	02/20/2018	1 Day				13-h				Milestone		
14-h	TARGET STAND Right Arm	1 Day	02/21/2018	02/21/2018	1 Day				14-h				Critical Path	1	
15-h	TARGET STAND Bottom Arm	1 Day	02/22/2018	02/22/2018	1 Day				15-h				Current Dat	е	
ID	Software Task	Duration	Start	End	Margin (±)							L .			
-sw	Move Acquire Algorithm to C++	1.5 Weeks	01/16/2018	01/26/2018	3 Days		1-sw								
2-sw	Orientation Algorithm Unit Tests	2 Weeks	01/16/2018	01/30/2018	4 Days		2-sw								
3-sw	Improve Orientation at Close Range	2 Weeks	01/22/2018	02/05/2018	4 Days		3-sw								
l-sw	Acquire Algorithm Unit Tests	2 Weeks	01/26/2018	02/09/2018	4 Days		4-sw								
5-sw	Test Algorithms on Rock64	1 Week	01/26/2018	02/02/2018	2 Days		5-sw								
6-sw	Develop/Integrate Camera Driver	2 Weeks	01/26/2018	02/09/2018	3 Days		6-sw								
7-sw	Develop/Integrate LRF Driver	2 Weeks	01/26/2018	02/09/2018	3 Days		7-sw								
B-sw	Develop/Integrate LiDar Driver	2 Weeks	01/26/2018	02/09/2018	5 Days		8-sw								
9-sw	Develop/Integrate Overall Driver	3 Weeks	01/30/2018	02/20/2018	6 Days		9-s	w							
ID	Electrical Task	Duration	Start	End	Margin (±)										
1-e	Configure Rock64	3 Days	01/27/2018	01/29/2018	1 Day	1	1-e								
2-е	Configure Visual Camera w/ Rock64	5 Davs	01/30/2018	02/03/2018	2 Davs		2	-e							
3-е	Configure LRF w/ Rock64	4 Days	02/04/2018	02/07/2018	1 Day			3-е							
4-е	Configure LiDar w/ Rock64	5 Davs	02/08/2018	02/12/2018	2 Davs			4-e							
5-e	Debug Acquire/Track Alg. on Rock64	7 Davs	02/13/2018	02/19/2018	2 Davs				5-e						
6-е	Debug Orientation Alg. on Rock64	7 Davs	02/20/2018	02/26/2018	2 Days				6-e						
7-e	Finalize Algorithm Testing on Rock64	7 Days	03/04/2018	03/10/2018	2 Days					7-e					
ID	Testing Task	Duration	Start	End	Margin (±)										
1-t	Finalize Parts Selection	1 Week	01/17/2018	01/24/2018	2 Days	1	1-t	~		Subsystem					
2-t	Order and Acquire Materials	18 Davs	01/22/2018	02/08/2018	1 Week		2-t			Completion					
3-t	Manufacture Test Track	2 Weeks	02/08/2018	02/22/2018	4 Days	1		3-t	I I						
4-t	Manufacture Target Test Stand	2 Weeks	02/08/2018	02/22/2018	4 Days	1		4-t	I						
5-t	Manufacture Target Satellite	2 Weeks	02/08/2018	02/22/2018	4 Days	1		5-t	I						
6-t	Manufacture Winch System	2 Weeks	02/08/2018	02/22/2018	4 Days	1		6-t							
7-t	Preliminary Procedure Testing	10 Days	02/22/2018	03/03/2018	2 Days	1			7-t						
8-t	Transition Test 1	4 Weeks	03/09/2018	04/06/2018	3 Days	1				8-t					
9-t	Transition Test 2	4 Weeks	03/09/2018	04/06/2018	1 Week	1				9-t		.	Project		
						-				· ·		- C	ompletion		
								•		•	•		•		•
								MŚR		TRR	AIAA Paper		SFR		PFR

Manufacturing

Budget

Schedule

Overview

SCOPE/TARGET Hardware Schedule

ID	Hardware Task		Duratio	on	St	art		End	Ma	argin (±)				
1-h	SCOPE Front Face)	2 Day	S	02/01	/2018	02/0	2/2018		1 Day					
2-h	SCOPE Top		1 Day	y	02/02	2/2018	02/0	2/2018		1 Day					
3-h	SCOPE Back		2 Day	S	02/05	5/2018	02/0	6/2018		1 Day					
4-h	SCOPE Left Face		2 Day	S	02/07	7/2018	02/0	8/2018		1 Day					
5-h	SCOPE Bottom Fac	е	2 Day	S	02/08	8/2018	02/0	9/2018		1 Day	_				
6-h	SCOPE Right Face)	1 Day	y	02/12	2/2018	02/1	2/2018		1 Day	•		Completed /	On Sche	dule
7-h	TEST STAND Left Ar	m	2 Day	S	01/22	2/2018	01/2	3/2018		1 Day	•		Concerned /	Behind	Schedule
8-h	TEST STAND Right A	rm	2 Day	S	01/22	2/2018	01/2	3/2018		1 Day	ſ				
9-h	TEST STAND Mounting	Plate	2 Day	S	01/31	/2018	02/0	1/2018		1 Day	l		Task		
10-h	TEST STAND Bottom	Arm	7 Day	S	02/01	/2018	02/0	6/2018	2	2 Days			Margin (:	E)	
11-h	TEST STAND Key(x2	2)	3 Day	S	02/12	2/2018	02/1	4/2018		1 Day		•	External	Denen	dency
12-h	TEST STAND Rods	;	1 Day	y	02/14	/2018	02/1	4/2018		1 Day		\sim	External	-	·
13-h	TARGET STAND Bottom	Plate	1 Day	y	02/20)/2018	02/2	0/2018		1 Day		تے	Internal	Depen	dency
14-h	TARGET STAND Right	Arm	1 Day	y	02/21	/2018	02/2	1/2018		1 Day			Mileston	е	
15-h	TARGET STAND Bottom	n Arm	1 Day	y	02/22	2/2018	02/2	2/2018		1 Day		•			
	January		Februa	ary			Marc	ch				April			May
Week:	1 2 3 4		5 6	7	8	9	10	11	12	13	14	15	16	17	18
	7-h 8-h 9-h 10-h	-h 3-h 4-h 5	5-h 6-h 11-h 12-h	3-h 14-h 15-h	D	♦ TRR			ΑΑΙΑ	Paper			SFR		PFR
\sum	Overview		> 5	Sche	dule		> Ma	nufac	turin	g	>	L	Budget		

Software Schedule

Electrical Schedule

Testing Schedule

Manufacturing

Manufacturing Overview

SCOPE Shell Design

Manufacturing

Schedule

Driving Requirements

DR 7.1 The sensor package shall not exceed 10x10x10[cm].

DR 7.2 The mass of the sensor package shall not exceed 1.33[kg].

Major Changes	Reason
Increased shell wall thickness from 0.05[in] to 0.1[in] .	Machining capability and warping.
Material changed from 6061 AI to MIC-6 AI	Higher tolerances and machinability

Overview

Budget

10[cm]

SCOPE Shell Design

Shell Progress and Critical Elements

Task	Critical Elements	Next Steps
Sensor Alignment	Alignment of optical camera and laser range finder must be parallel to 0.1[deg] .	Using shims (0.001" thickness) to alter the pointing of sensors to 10[cm] off target.

SCOPE Test Stand

Driving Requirements

DR 1.1 The sensor shall be able to detect a target satellite with volumetric dimensions between 20x20x30 [cm] and 1x1x1 [m].

DR 1.2.1 The sensor shall be able to detect a target satellite at a range of 100 [m].

Major Changes	Reason
Added 9:1 gearing on X and Y axes.	Ease of manual turning.
Material thicknesses increased	Machinability and warping.

Budget

Manufacturing

Test Stand Progress and Critical Element

Task	Critical Elements	Next Steps
Sensor Package Actuation	Test Stand must be manually adjusted by 0.1[deg] to capture at least half of smallest TARGET.	Implementing 9:1 3D printed gearing into test stand for ease of manual adjustment.
20[cm]	0.1° I I I I I I I I I I I I I I I I I I I	"90" teeth 10 teeth Allen key adjustment
Completed On Schedule Concerned Behind Schedule	2/6 hr Solid Works model Machining Programs Overview Schedule	4/17 hr Manufacturing Manufacturin

Target Satellite Progress

Target Test Stand Design - 2 Machined Parts

Target Test Stand Progress

Task	Critical Elements	Next Steps
Track Integration	Stability of wheels on track to allow for smooth movement	Using rubber for better traction vs. using nylon wheel for less friction.

Track System - COTS Components

Winch Progress and Critical Elements

Task	Critical Elements	Next Steps
Winch Torget implementation	Controlling the speed of the target between 0.1[m/s] and 1[m/s] .	Create torque curves for the stepper motor.
winch - rarget implementation	Stopping the target before the end of the track to ensure no damage to test setup	Determining the spring needed through testing and theory.

Software Optimization and Implementation

$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	Overview	\rightarrow	Schedule	Manufacturing		Budget	
/					/		/

Background Subtraction

DR 1.2.1 The sensor shall be able to detect a target satellite at a range of 100 [m].

Background Subtraction On Schedule

Task	Critical Elements	Next Steps
Optical Camera with Background Subtraction	Computation Time	Improve for higher resolutions
Test Background Subtraction Script	Camera auto focus and algorithm accuracy	Determine accuracy with testing model
Integrate into Software Hierarchy	Computation Time and Accuracy of Turning Angles	Automate the process within the hierarchy

Iterative Closest Point ~ FLOOD

DR 4.1 The sensor package shall output the target satellite's relative orientation at a starting range of 10[m].

FLOOD On Schedule

Task	Status	Next Steps
Test Output rate of FLOOD on microcontroller	Output rate drops to ~1.5 Hz in some cases	Limit number of points analyzed at close range
Improve accuracy of FLOOD	POSE inaccurate at close range	Change TARGET model/Consider known limitations
Integrate orientation software	Waiting for LiDAR driver	Test algorithm using hardware and miniature model

Electronics/Software Integration

Final Test Software Architecture

Electrical/Software Integration Tasks On Schedule

Updated Cost Plan

	Overview	>	Schedule	Manufacturing		Budget	>
/		/			/		/

Cost Plan

Acknowledgments

We would like to thank **Trudy Schwartz, Bobby Hodgkinson**, and **Matt Rhode** for their guidance with the testing design.

We would also like to thank **Zoltan Sternovsky** for general project guidance.

Thank you to Lee and Tim for presentation practice help and feedback.

Questions?

References

Users.auth.gr. N. p., 2017. Web. 15 Oct. 2017. "DFK AFUJ003-M12." The Imaging Source,

www.theimagingsource.com/products/autofocus-cameras/usb-3.0-color/dfkafuj003m12/.

Brown, Gary. "How Autofocus Cameras Work." HowStuffWorks, 1 Apr. 2000, electronics.howstuffworks.com/autofocus3.htm.

"Depth of Field, Angle & Field of View, & Equivalent Lens Calculator." Points in Focus Photography, 31 Aug. 2017, http://www.pointsinfocus.com/tools/depth-of-field-and-equivalent-lens-calculator/#{"c":[{"av":"8","fl":16,"d":100000}],"m":1}.

"Infrastructure," *Research and Engineering Center for Unmanned Vehicles* Available: <u>http://www.colorado.edu/recuv/facilities/infrastructure</u>

"OpenCV: Open Source Computer Vision." <u>https://docs.opencv.org/3.3.0</u>

"Advanced Scientific Concepts Inc." Advancedscientificconcepts.com. N. p., 2017. Web. 16 Oct. 2017.

SF11/C. "SF11/C (120 M) - Lightware Optoelectronics (Pty) Ltd." *LightWare Optoelectronics (Pty) Ltd.* N. p., 2017. Web. 16 Oct. 2017.

References

Rusinkiewicz, Szymon; Marc Levoy (2001). Efficient Variants of the ICP Algorithm. Proceedings Third International Conference on 3-D Digital Imaging and Modeling. Quebec City, Quebec, Canada. pp. 145–152.

M. Attia Y. Slama M. A. Kamoun "On performance evaluation of registration algorithms for 3d point clouds" Computer Graphics Imaging and Visualization (CGiV) 2016 13th International Conference pp. 45-50 2016.

Libretexts. "Propagation of Error." *Chemistry LibreTexts*, Libretexts, 14 Mar. 2017, chem.libretexts.org/Core/Analytical_Chemistry/Quantifying_Nature/Significant_Digits/Propagation_of_Error.

"Normal Distributions: Definition, Word Problems." Statistics How To, <u>www.statisticshowto.com/probability-and-</u> <u>statistics/normal-distributions/</u>

Corcoran, Jem. "Intro the Mathematical Statistics." APPM Lecture. 2017, Boulder, CU Boulder.

Jackson, Jelliffe. "Uncertainty Analysis." ASEN Lecture. 2015, Boulder, CU Boulder.

"Monte Carlo Simulation." Monte Carlo Simulation: What Is It and How Does It Work? - Palisade, www.palisade.com/risk/monte carlo simulation.asp

"O3D301 - 3D Camera - Eclass: 27310205 / 27-31-02-05." *Ifm.com*. N. p., 2017. Web. 16 Oct. 2017.

References

http://1.bp.blogspot.com/_SjnNZeKhheo/TTWSPzsI1nI/AAAAAAAAAAAI/SpCXSVeDfFU/s1600/Cygnus+approac hing+the+ISS.jpg

https://imgur.com/gallery/WNG2Iqq - Soyuz docking with ISS GIF

https://www.theimagingsource.com/products/autofocus-cameras/usb-3.0-color/dfkafuj003m12/

https://www.aico-lens.com/product/f-25mm-f-2-10mp-4k-m12-far-field-board-lens-achf2520fm/

http://robotsforroboticists.com/kalman-filtering/

Dynapar, "Quadrature Encoder Overview," *Quadrature Encoder - Dynapar*Available: http://www.dynapar.com/Technology/Encoder_Basics/Quadrature_Encoder/.

Backup Slide Index

Error Analysis	Derivations	Simulations	Software	Testing
<u>1Km Infeasibility</u>	Sensor Calibration	Thermal conditions	Autofocus	<u>Functional</u>
Distribution of LRF	Sensor face offset	Power Outputs	<u>capabilities</u>	<u>Requirements</u> <u>Fulfilled</u>
<u>Iviean</u>	Error due to face		Flash LiDAR	
Position Error Propagation	offset	Operational temperatures	resolution	<u>Test Plan</u>
	1km infeasibility		FLOOD explained	<u>Test 1</u>
Behavior of STD of		Static load analysis	KD two s	Testing Hendusons
Sample Wean			<u>KD tree</u>	<u>Flowchart</u>
OpC w/ Background			FLOOD timing	riowenare
subtraction				The Target Satellite
				Encoder Quadrature

Test Plan

• Acquire and Track Test

- Dependencies
 - ITLL/Engineering Center hallway availability Already talked to Dean and outlined test plan.
 - Lighting Received approval and ability to control lighting
- Schedule
 - Currently Acquire and Track testing is scheduled for 3/5/18 to 3/19/18.
 - Enough time to be flexible

• Track and Orientation Testing

- Dependencies
 - ITLL/Engineering Center Hallway availability and Lighting
- Schedule
 - Track and Orientation testing is scheduled for 3/19/18 to 4/2/18
 - Orientation testing can be conducted prior than this to account for Spring Break

Track Progress and Critical Elements

Task	Critical Elements	Next Steps
Track Assembly	Level all the track feet properly so that the track is as flat as possible	Use digital level on all joints of the track
Balance Analysis	Study the forces acting on the target stand and ensure dynamic stability	Implement winch and spring systems

Sensors and Rock64 Diagrams

Laser Rangefinder

Visual Camera

Sensors and Rock64 Diagrams

Flash LiDAR

Rock64 Microcontroller

25

ž

Shell Diagrams

Mount Face

Back Plate

TARGET Model

Driving Requirements for Physical Characteristics

DR 1.1: The sensor shall be able to detect a target satellite with volumetric dimensions between 20x20x30 [cm] and 1x1x1 [m].

DR 1.4: The sensor shall be able to detect a target satellite under favorable lighting conditions.*

Driving Requirements for Motion Characteristics

DR 1.2: The sensor shall be able to detect a target satellite at a range of 100 [m].

DR 3.1: The sensor package shall output the target satellite's relative velocity with an error of less than 1% with a relative velocity of **0.1[m/s]** to **1[m/s]**.

DR 5.2: The sensor shall be able to detect target satellite rotation rates between 1[deg/s] and 5[deg/s].

*Favorable lighting conditions assumes diffusive white light on diffusive white paper

Test 1

Assumptions:

- The rail system allows the cart to move perfectly straight:
 - i.e the side to side motion is constrained and can be assumed to be so small that it is negligible
- The motor does not fluctuate:
 - i.e the motor pulls at a constant angular velocity and there is no noise or fluctuations in this velocity
- The target satellite will be moving at a constant rate of .1 m/s during the "Acquire phase" and then speed up to testing speeds for the remainder of the test

Phases:

- Set SCOPE at origin, 0 m
- Use a tape measure, (EC class 1) to set the rail at a distance that will cover 90m 105m from SCOPE
- Turn on SCOPE and position it down the line of sight from the target
- Set the first 60s of target movement to .1 m/s and the remainder of the test to .1 m/s
- Turn on the motor/microcontroller setup
- Repeat steps 4 and 5 with varying remainder of test velocities from .1 m/s to 1 m/s.

Fulfilling Functional Requirements

Functional Requirements	Test	
FR 1	Transition Test 1	
FR 2	Transition Test 1	
FR 3	Transition Test 1	
FR 4	Transition Test 2	
FR 5	Transition Test 2	
FR 6	Inspection	
FR 7	Inspection	

Testing Hardware Flow Chart

FEA Mesh and Parameters (thermal)

All bodies have constant material properties:

Component(s): Shell Material: 6061 Aluminum Alloy Thermal Conductivity: 170 W/(m*K)

Component(s): Laser Rangefinder Material: ABS PC Thermal Conductivity: 0.2618 W/(m*K)

Component(s): Rock64 Board Material: Non-conductive PCB Substrate Thermal Conductivity: 0.2256 W/(m*K)

Component(s): Visual Camera, 03D301 LiDAR Material: ABS PC/6061 Aluminum Thermal Conductivity: 85 W/(m*K)

Contact Resistance: 2.5x10^-4 W*m^2/K

Triangular based mesh

FEA Mesh and Parameters (thermal)

Model uses the following conditions:

Ambient Temperature: 290K

Thermal Emissivity: 0.12

Contact Resistance: 2.5x10^-4 W*m^2/K

Triangular based mesh

Various Power Outputs

Component	Low Power	Peak Power	Mean Power
Rock64 Media Board	1.25W	10W	2.5W
IFM 03D301 Flash LiDAR	5W	48W	10W
DFK AFUJ003-M12	n/a	5W	1.25W
SC30-C Laser Rangefinder	n/a	5W	1.25W

Sources

Rock64: <u>https://forum.pine64.org/showthread.php?tid=1220</u>

AFUJ003: https://www.theimagingsource.com/products/autofocus-cameras/usb

-3.0-color/dfkafuj003m12/

SC30-C: https://www.parallax.com/product/28058

03D301: https://www.ifm.com/hu/en/product/O3D301

Various Operational Temperatures

Component	Peak Operational Temperature	Maximum Predicted Temperature	
Rock64 Media Board	65°C	42°C	
IFM 03D301 Flash LiDAR	50°C	30°C	
DFK AFUJ003-M12	45°C	27°C	
SC30-C Laser Rangefinder	40°C	26°C	

<u>Sources</u>

Rock64: <u>https://forum.pine64.org/showthread.php?tid=1220</u>

AFUJ003: <u>https://www.theimagingsource.com/products/autofocus-cameras/usb</u>

-3.0-color/dfkafuj003m12/

SC30-C: https://www.parallax.com/product/28058

03D301: https://www.ifm.com/hu/en/product/O3D301

Sensor Calibration

- If \bigcirc , then the origin of the image frame can be moved to that point.
- If ullet, then mechanical techniques can adjust camera pointing.

- 1. Localize offset point with cardboard, decreasing in size.
- 2. Measure the distance offset and apply correction.

u

Minimum Pointing Accuracy

The minimum sized model defines the pointing accuracy to be required as a **20[cm]** vertical and horizontal resolution.

This means that the sensor package must be able to rotate at **0.115[deg]** per step.

The resolution of our **sensor test stand encoders and digital level** give a resolution of **0.01[deg]**.

20[cm]

Therefore, we can measure up to 1.7[cm] per step

Sensor Face Offset

All offsets are accounted for in software

R_{fl} = <-49,-35,0> [mm]

Error Due to Face Offset

This offset causes error in pointing as the object gets closer.

At **10[m]**, the closest position in which the laser rangefinder is used, this error (vertical offset) is **2.79[cm]**.

Beam Divergence

Laser Rangefinder has a beam divergence of 0.2 degrees.

Track Motor math

Givens:

 $r = 5 \ cm$ $F_1 = 20 \ N$ $\sigma = 1.5$

Analysis:

$a = 1.5 \ m/s^2$
$m = F_1/a = 2.040 \ kg$
$F_2 = ma = 3.06 N$
$F_T = F_1 + F_2 = 23.06 N$
$\underline{T = F_T r = 1.153 \ Nm}$
$T_F = T\sigma = 1.7295 \ Nm$
$P_F = F v_{max} \sigma = 34.59 \ W$
$\omega_{max} = v_{max}/r = 12.5 \ rad/s = 190.98 \ RPM$
$\omega_{min} = v_{max}/r = 12.5 \ rad/s = 19.09 \ RPM$

Conclusions:

Need pullout torque at least 2 Nm between ~19 RPM and 190 RPM Need 34.59 W for power

Velocity control - FBDs

Torque calculations

r = 0.0762m $F_s = 12.34N$ ma = 12.5 * 0.2 = 2.5N $D = 1/2 * \rho V^2 C_d A = 0.7989N$

Analysis:

 $F_{tot} = -F_s - D + F_p = ma$ $F_p = F_s + D + ma = 15.6289N$ $T = F_p * r = 1.19Nm$ at $v_{max} = 1m/s$: $\omega = v/r = 125RPM$

Conclusions:

Givens:

The needed Torque at 125 RPM is 1.19Nm. Looking at the Pullout torque curve one the next slide, it is possible to conclude that the motor will provide sufficient torque for the test stand to move as needed

Torque vs RPM

Velocity Changes of Target Test Stand

assume that it takes 2 rotations before the cable start piling on top of each other

If we had to maintain a constant velocity when $v_0 = 0.7$ m/s, this is how we should decrease the angular velocity for the winch

If instead we maintained a constant angular rotation throughout the whole experiment, starting with our velocity would increase if we started at $v_0 = 0.7$ m/s,

Track Encoder math

Analysis:

$$ppr = 2\pi/\theta = 314.159$$

$$f_{max} = \omega_{max}/\theta = 1000Hz$$

$$f_{min} = \omega_{min}/\theta = 100Hz$$

Givens:

Choose s = 1 mm (accuracy at 1 m) one order of magnitude greater than Functional requirement

$$r = 5 \ cm$$

$$\theta = s/r = 0.02 \ rad$$

$$\omega_{max} = 190.98 \ RPM$$

$$\omega_{min} = 19.09 \ RPM$$

Conclusions:

- Need at least 314 pulses per rev
- Need a min frequency of 1000 Hz

Orientation Encoder math

Analysis:

Choose detection angle to be 0.1 deg (one order of magnitude greater than functional requirement)

$$\theta = 0.1 \ deg$$

$$ppr = 360 \ deg/\theta = 3600$$

$$f_{max} = \omega_{max}/\theta = 50 \ Hz$$

$$f_{min} = \omega_{min}/\theta = 10 \ Hz$$

Givens:

$$r = 5 \ cm$$

$$\omega_{max} = 5 \ deg/s$$

$$\omega_{min} = 1 \ deg/s$$

Conclusions:

- Need at least 3600 pulses per rev
- Need a min frequency of 50 Hz

1km Infeasibility

Allowable pixel error for background subtraction: 7px

Autofocus capabilities

Two types: Passive and Active

- 1. Active uses SONAR or IR
- 2. Passive uses pixel comparison and computer analysis

Passive: Determines blurriness of image \rightarrow adjusts to find min. Blurriness

- Determines blurriness by contrast of edge pixels

Flash LiDAR Resolution

IFM 03D301	FOV:40X30	RES:176X132	20 x 20 cm	1 x 1 m	
Distance (m)	total (px/m ²)	(cm²/pixel)	Pixel per object	Pixel per object	
11	492	20.32	20	492	
10	596	16.79	24	596	
9	735	13.60	29	735	
8	931	10.75	37	931 1215 1654 2382	
7	1215	8.23	49		
6	1654	6.04	66		
5	2382	4.20	95		
4	3722	2.69	149	3722	
3	6617	1.51	265	6617	
2	14888	0.67	596	14888	
1	59554	0.17	2382	59554	

 $\frac{TotalPixelRes}{m^2} = horizontalpix/m * verticalpix/m$

FLOOD Explained

FLOOD Explained- K-D Search

- 1. Faces from 3D model are stored in bins in a k-d tree data structure
 - a. Each bin represents a 3D box
- 2. For each point from our Lidar scan traverse down to bin containing that point
- 3. Check the distance from point to each face contained in bin
- 4. Repeat step 3 for neighboring bins if the distance to the edge of that bin is less than the current minimum found distance

FLOOD Explained

Given the two point cloud sets M and D, where D is the set produced by the LiDAR scan, and M is the set derived from the model. For each point $d_i \in \mathbb{R}^3$ in D, and a rotation Rand translation t, there is a point c_i such that.

$$c_i = \arg\min_{c_k \in M} \| (Rd_i + t) - c_k \|, \quad \forall i = 1...m$$
 (1)

t and R are then calculated using the following error function.

$$\epsilon = \frac{1}{m} \min_{t,R} \sum_{i=1}^{m} \| Rd_i + t - c_i \|^2$$
(2)

FLOOD Timing

- Almost always above 2 Hz minimum
- Add in maximum number of points so algorithm does not have to process 10's of thousands of points

Blender

() +	File Render	Window	Help 🗄	Default	+ X 😯	Scene	$+\times$	Blender Rende	r 🕴	💫 v2.79	Verts:3,682 Faces	s:7,356 Tris:7,356	Objects:1/3 Lamps:1/3	l Mem:10.87M Camera		
ols 🖌	Rigid Body Tool	Came	era Persp							View Sea	arch All Scenes	÷ 🔎				
100	dd/Remove:							· · · ·	ə 🐉 Sc	cene						
te l	dd Acti Add Pa	ss							• 💆] RenderLay	yers 🕘					
Crea	emove									Camera						0 k 🕅
	bject Tools:									Lamp						• 1 6
ation	alculate Mass							Ï	3 7	5 U V (5 📦 🖉 🕱 😻 🗸	2				
Rela	opy from Active								* * •	Scene						
5	pply Transformat								V Rende	or						
natio	ake To Keyframe	s							* Renue	ei		TE		21 0		
Anir	Connect										Render		Animation	W [®]	Audio	
s									Display	<i>r</i> :		Image Edi	tor			Ŷ D
iysic									Dimer	nsions						
E E									Render	r Presets						++-
ncil									Resolut	tion:	_	_	Frame Rar	iae:		
e Pe									2 imp	ort bpy_e	extras					
reas								I	3 impo 4 impo	ort csv						
0								I	5 imp	ort rando	im Lac an					
_								I	7	ort numpy	as np					
▼ Op	erator							I	8 bpy	.context.	scene.render.re	esolution_x = 2	2560 1928			
								I	10	. concexe.	Scene . render . re	coordinin_y = 1				
								I	11 # Se 12 oc =	et Camera = bpv.dat	<pre>Properties a.objects.get('</pre>	"Camera")				
								I	13 oc.	location	= (0, 0, 0)					
								I	14 oc. 1	rotation_	euter = (1.5708	8, 0, -1.5708)				
									16 # 10	oad obj						
		z –						I	18 # S	et object	Properties					
		× (1	865) Camer	a				I	19 Ini:	tialPosX tialPosY	= 100 = random.unifor	rm(-12,8813, 12	2,8813)			
		(1	.805) Carrier	a					21 Ini	tialPosZ	= random.unifor	rm(-9.18871, 9.	18871)			
	View Select	Add Obj	ject 🔰 Ol	bject Mode 🗧		Global	-		22 23 ob =	= bpv.dat	a.objects.get("TargetSatellit	:e")			
			10 50	00 100	120 140 150	100 200	220 24		24 ob.	location	= (InitialPosX,	, InitialPosY,	InitialPosZ)			
	40 -20 0	20	40 60	80 100	120 140 160	180 200	220 24		23 (##1.4)(7)							
- e e -	View Marke	Frame	Playback	Start:	1 ▶ < End:	1866) (1865)			View	Text Edit Forn	nat Templates	Acquire_MonteC	a († 🗀 🗶) 🗄 🗉 🔥	Run Script	Register

Distribution of LRF Mean

n= number of LRF returns per every system data output

 σ = standard deviation of normal distribution for single LRF data output

 \bar{X} = the mean of all LRF data over the coarse of half a second. It should be noted the the expected value of the mean is the actual distance.

CI = Confidence Interval

 $Z_{\alpha/2}$ = Normal Distribution Critical value

Important to note that the standard deviation of the mean is $\frac{\sigma}{\sqrt{n}}$

Normal distribution of mean of LRF data:

$$CI: \bar{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \to Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le 0.01 \bar{X}$$

For a 99% confidence interval that the LRF is returning data with in one percent of actual distance, $Z_{\alpha/2} = 2.575$.

$$(2.575)\frac{\sigma}{\sqrt{n}} \le 0.01\bar{X} \to \sigma \le 0.003883d$$

Use of Kalman Filtering

Means to use data from multiple sources in order to create a joint probability distribution that can then be used to more accurately predict the correct data parameters.

Our Date Sources:

- Laser Range Finder
- Optical Camera
- LiDar

Our goal using a Kalman filter: to optimize estimation of the state of the TARGET satellite in the Orientation Phase.

Position Error Propagation

Using the standard deviation of the position the standard deviation of the velocity can be calculated with the following equation:

$$x = a + b - c \quad \sigma_x = \sqrt{\sigma_a^2 + \sigma_b^2 + \sigma_c^2}$$

For velocity error propagation ($\sigma_{pos1} = \sigma_{pos}$):

$$vel = pos2 - pos1 \quad \sigma_{vel} = \sqrt{\sigma_{pos1}^2 + \sigma_{pos2}^2} = \sqrt{2\sigma_{pos1}^2} = \sqrt{2}\sigma_{pos1}$$

Based on the velocity error propagation, the standard deviation of the laser range finder needs to be the following to satisfy 1% accuracy. The worst case is at 10m with 10 data returns per half second.

$$\sqrt{2}\sigma_{pos} \le \sqrt{n}(0.003883)d \to \sigma_{pos} \le \sqrt{n/2}(0.003883)d = \sqrt{5}(0.03883) = 0.086830d = \sqrt{5}(0.03883)d = 0.086830d = 0.0868300d = 0.086830d = 0.0868300d = 0.086830d = 0.0868300d = 0.0868300d = 0.0868300d = 0.0868300d =$$

Therefore the 99% confidence interval can be calculated.

$$Z_{\alpha/2}\frac{\sigma}{\sqrt{n}} = (2.575)(0.0868/\sqrt{1}) = \pm 0.224m$$

Behavior of STD of Sample Mean-Central Limit Thm

Important to note that the standard deviation of the mean is $\frac{\sigma}{\sqrt{n}}$

OpC w/ Background subtraction

 σ_n = standard deviation of vertical pointing off center in number of pixels

- σ_{ψ} = standard deviation of horizontal pointing off center in meters
- σ_{θ} = standard deviation of vertical pointing off center in meters

d = distance away from camera

 α = horizontal full angle β = vertical full angle m = number of pixels in horizontal direction n = number of pixels in vertical direction σ_m = standard deviation of horizontal pointing off center in number of pixels

To calculate the standard deviation in terms of meters.

$$\sigma_{\psi} = \frac{2dtan(\frac{\alpha}{2})}{m}(\sigma_m) \quad \sigma_{\theta} = \frac{2dtan(\frac{\beta}{2})}{n}(\sigma_n)$$

A smaller field of view is beneficial, the alpha and beta of the hard found that is the smallest but can still fit the larger possible target in the FOV at the minimum distance of 10 m with a 25mm focal length is $\alpha = 14.68$ and $\beta = 10.5 deg$

The expected value for the distance returned from the center of the object is zero so in order to construct the normal distributions for horizontal and vertical pointing.

$$\theta = \sigma_{\theta} Z \quad \psi = \sigma_{\psi} Z$$

Static Load Analysis

