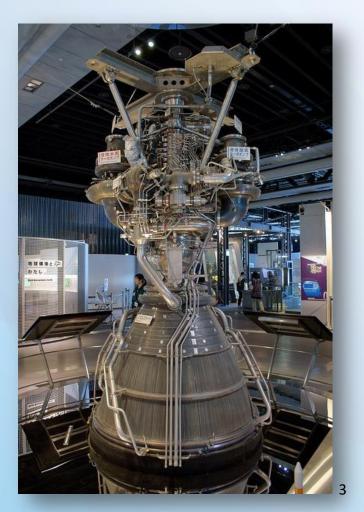


Customer: Special Aerospace Services Chris Webber and Tim Bulk

The Design

- Project Description
- Design Solution
- Design Requirements and Solution
- Verification and Validation
- Risk Analysis
- Moving Forward
- Q/A



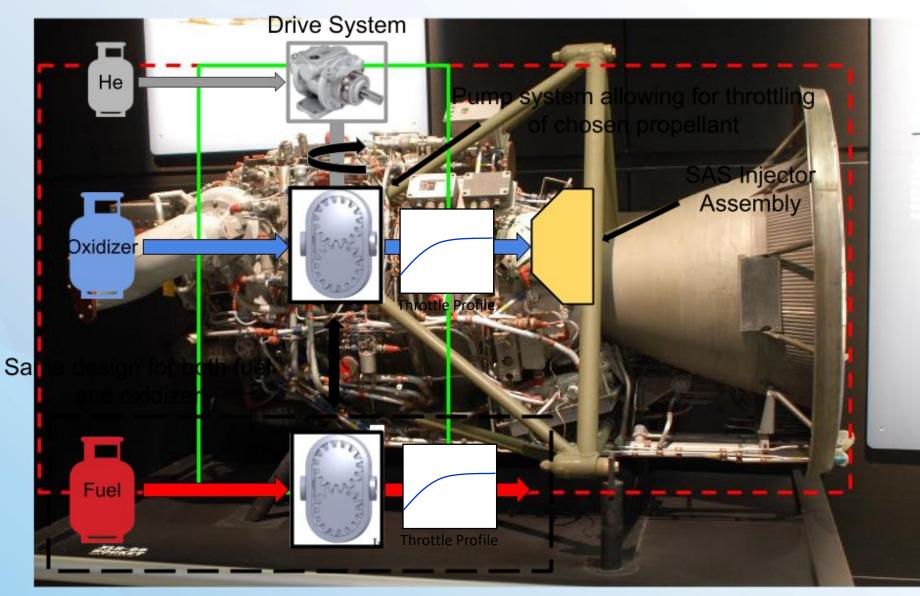
Project Description

- Deliver propellants to combustor
- Low pressure fuel tanks
- Precise throttling control

The Design

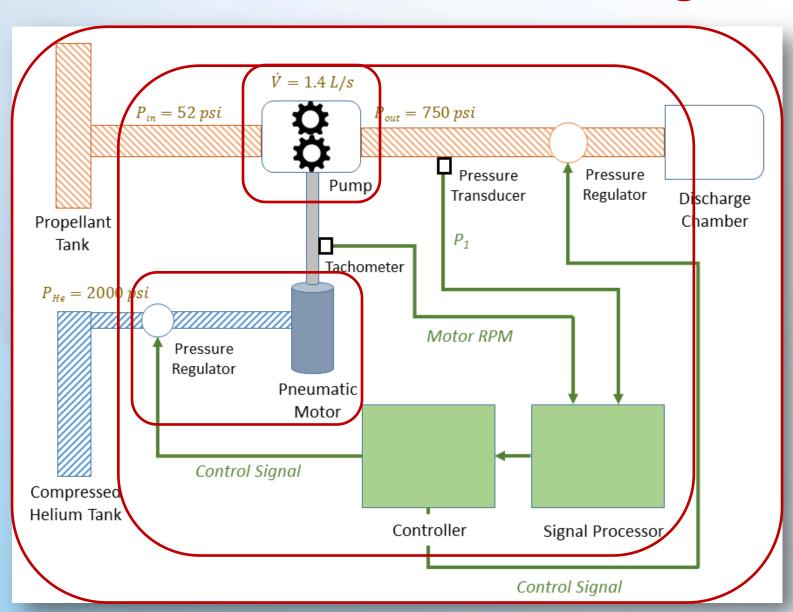
Design and manufacture a pneumatically powered pump system for use on an upper stage rocket engine or lander.

- Proof of concept pump system for hypergolic propellants
- 10%-100% throttleability
- Pneumatically powered

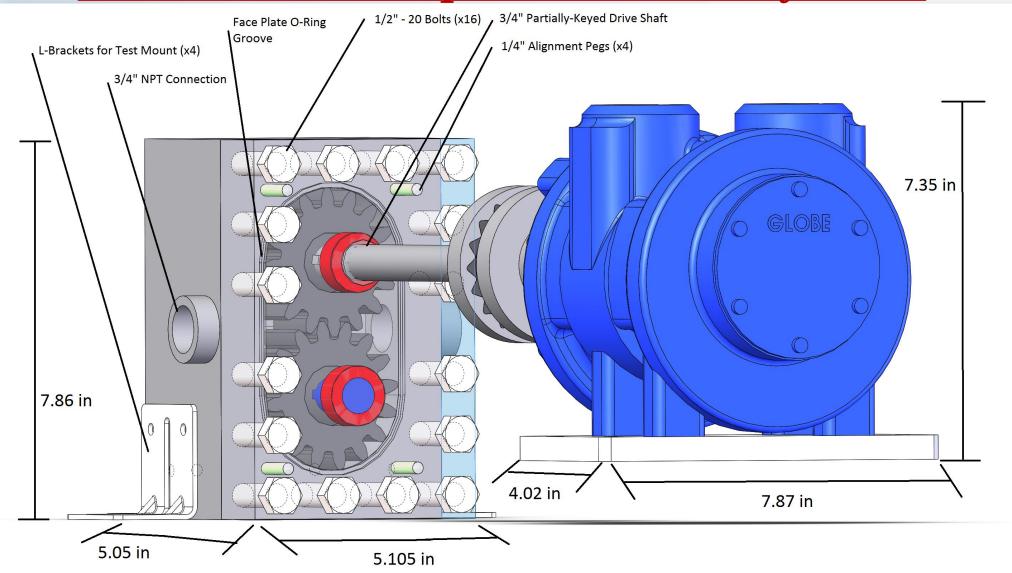


*Reference 11

Level	Functional Success	Performance Success	Functional Requirement
1	 Pneumatic power Digital control Meets safety requirements 	 750 ± 15 psi outlet pressure Structural FOS 2.5 120 seconds of operation 75% efficiency of pump at full throttle 	 FR1 – System is pneumatically driven FR7 - FOS of 2.5 FR8 – 75% efficiency at full throttle FR3 – Pump outlet is at 750 ± 15 PSI
2	 Propellant stream throttling All level 1 requirements 	 10-100% throttleability 0-100% throttle in 2 seconds All level 1 requirements 	 FR2 – Pump system is throttleable FR4 – Pump system can run through throttle profile FR5 – Pump is restartable
3	 Hypergolic compatible All level 1 and 2 requirements 	0-100% throttle in 1 secondAll level 1 and 2 requirements	• FR6 – System is built to hypergolic standards
>	Project escription The	Design Verification & Validation	& Moving Forward



Design Solution



Functional Block Diagram

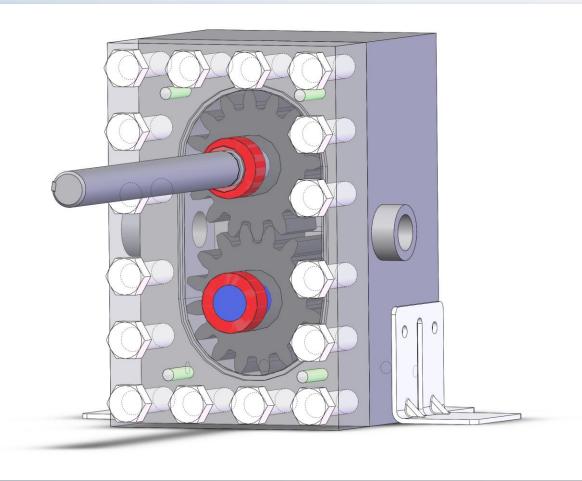
<u>Subsystems</u>
1. Pump
2. Drive System
3. Control
4. Test

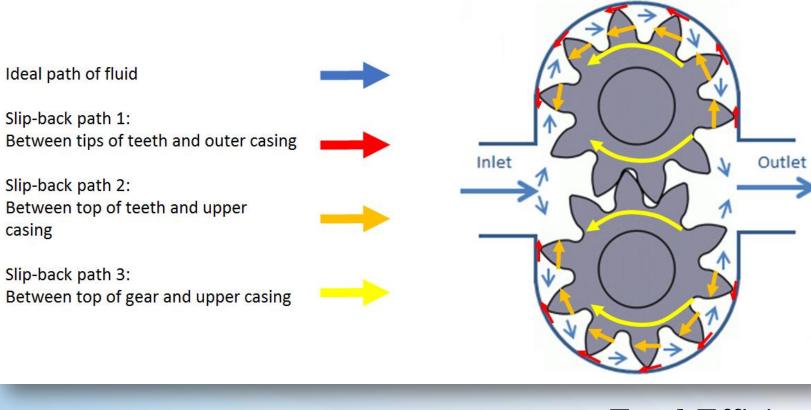
PEAPOD Pump and Drive System

Critical Project Elements	Associated Subsystem(s)
Develop a functioning pump	Pump
Meet efficiency requirements	Pump
Correct acquisition of pressure, RPM, and mass flow rate	Control
Developing throttling capabilities (10-100%)	Pump, Drive System, Control
Safe operation of pump and drive system	Test
Budgetary restrictions	All

The Design

- The Pump
 - Fluid Analysis
- The Drive System
 - Required Performance Specifications
 - System Level Efficiency Analysis
 - Simulated Throttle Profile
 - Mechanical Analysis
- Control System
 - Software
 - Electronics

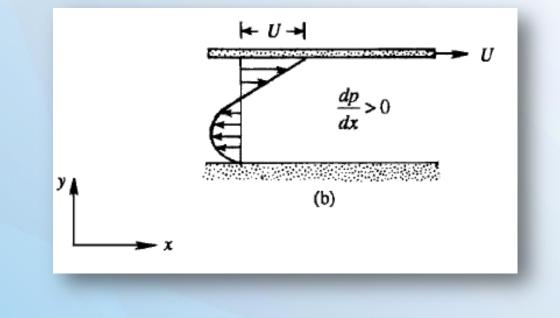



Pump Design and Functionality

Gear Pump Efficiency

Volumetric Efficiency:

$$e_v = \frac{\dot{m}_{actual}}{\dot{m}_{ideal}} = 1 - \frac{\dot{m}_{slip_1} + \dot{m}_{slip_2} + \dot{m}_{slip_3}}{\dot{m}_{ideal}}$$


Total Efficiency:

 $e = e_m * e_v$

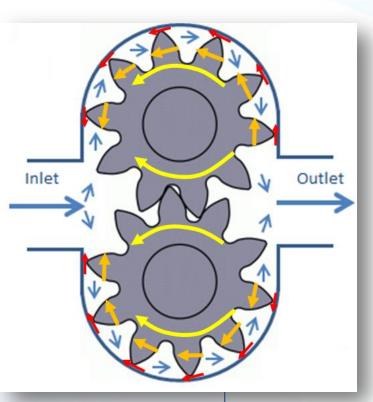
Couette-Poiseuille Flow

Volumetric flow per unit width of channel

$$\frac{Q}{w} = \int_0^h u dy = U \frac{h}{2} \left[1 - \frac{h^2}{6\mu U} \frac{dp}{dx} \right]$$

- Slip-back paths 1, 2, and 3 can be described by the Couette-Poiseuille equations where the pressure gradient is adverse
- Couette (moving plate) term is 2 orders of magnitude smaller, so this loss contribution is **negligible** (less than 1% error introduced)
- Slip-back path 3 is more complicated and more assumptions must be made

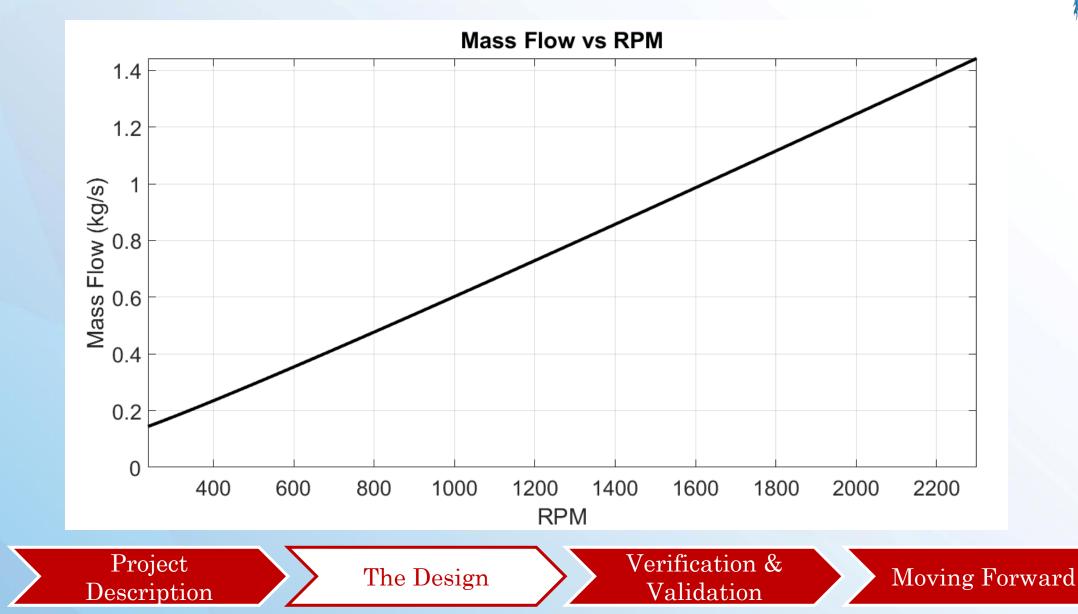
Volumetric Losses

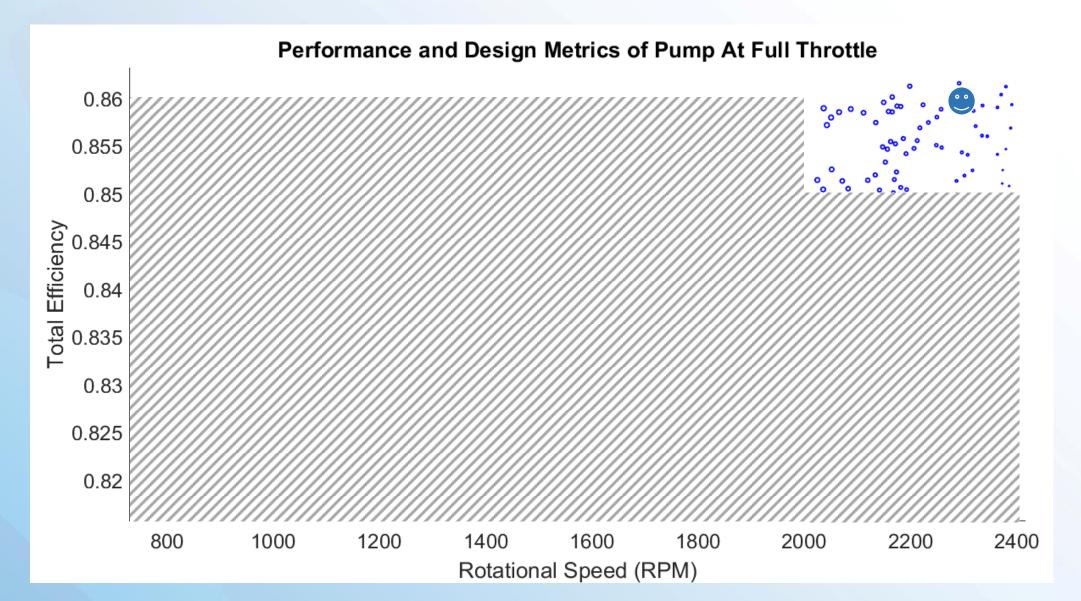

$$\dot{m}_{ideal} = \frac{\rho \omega w D^2 (9n - 2.35))}{16n^2}$$

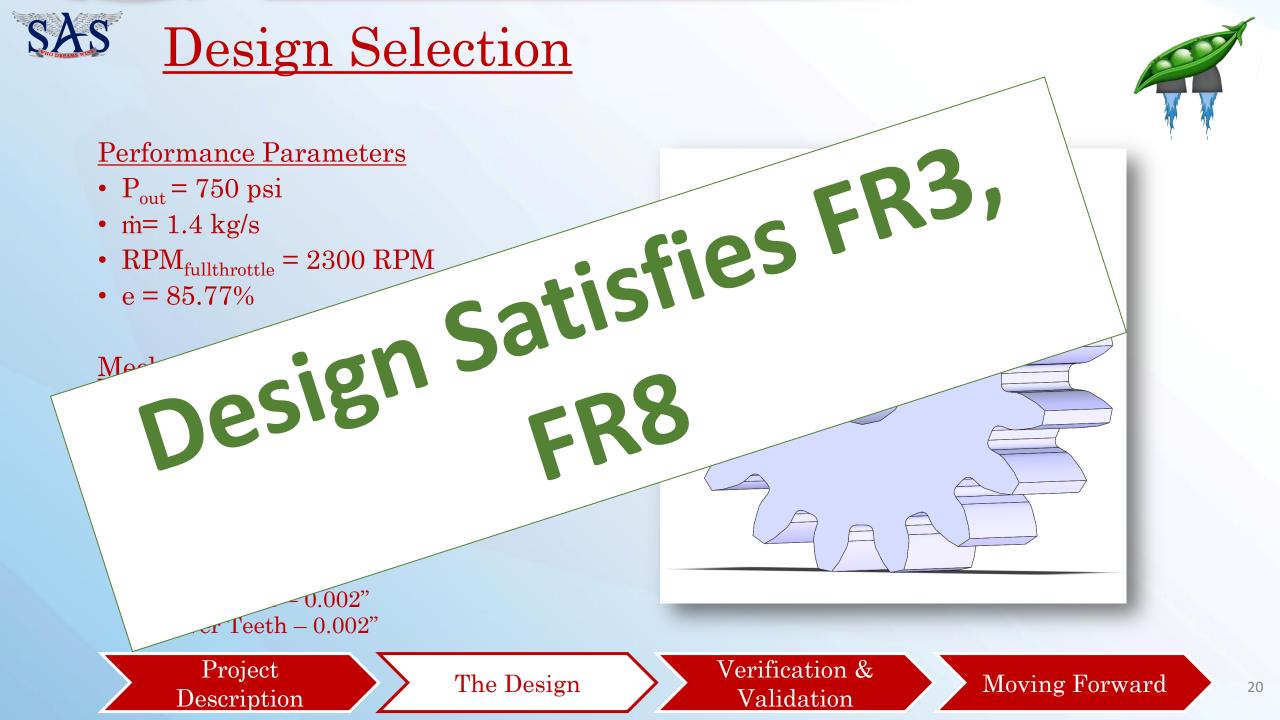
$$\dot{m}_{slip_1} = \frac{\rho h_{tip}^3 w \Delta P_1}{12 \mu L_{tip}}$$

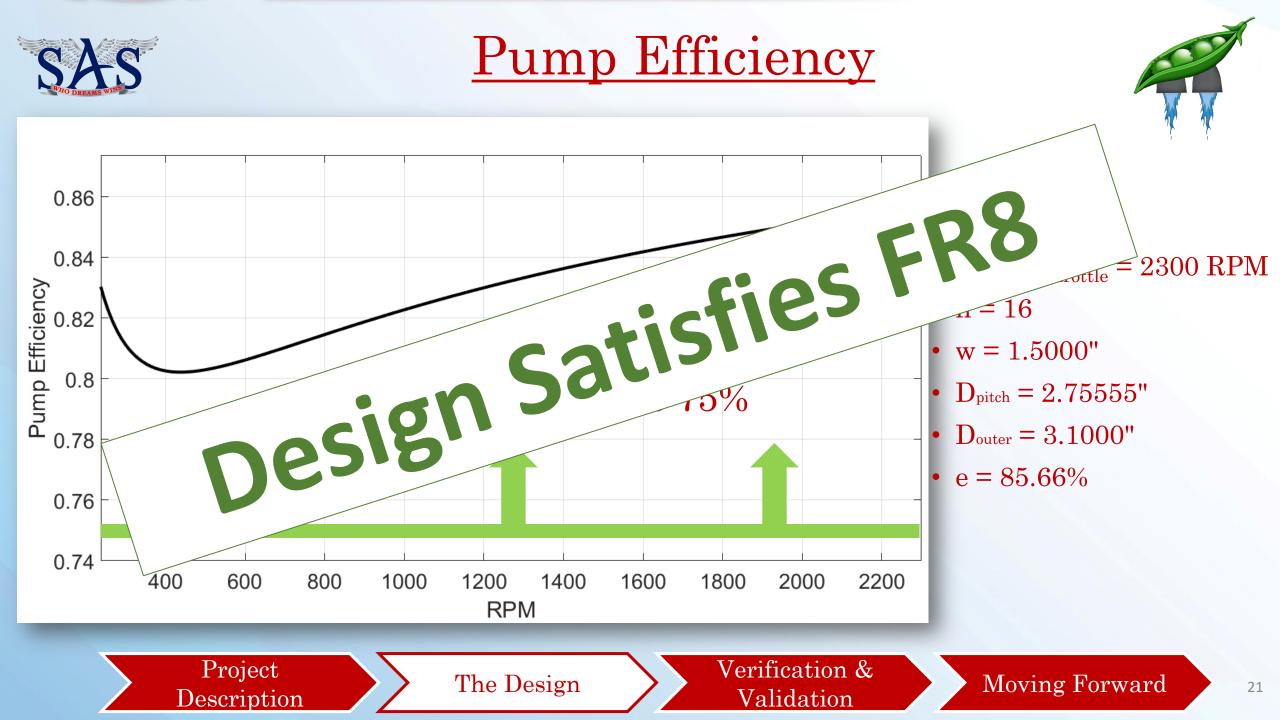
$$\dot{m}_{slip_2} = \frac{3\rho h_{top}^3 D \Delta P_2}{16n\mu} \frac{L_{top}}{L_{top}}$$

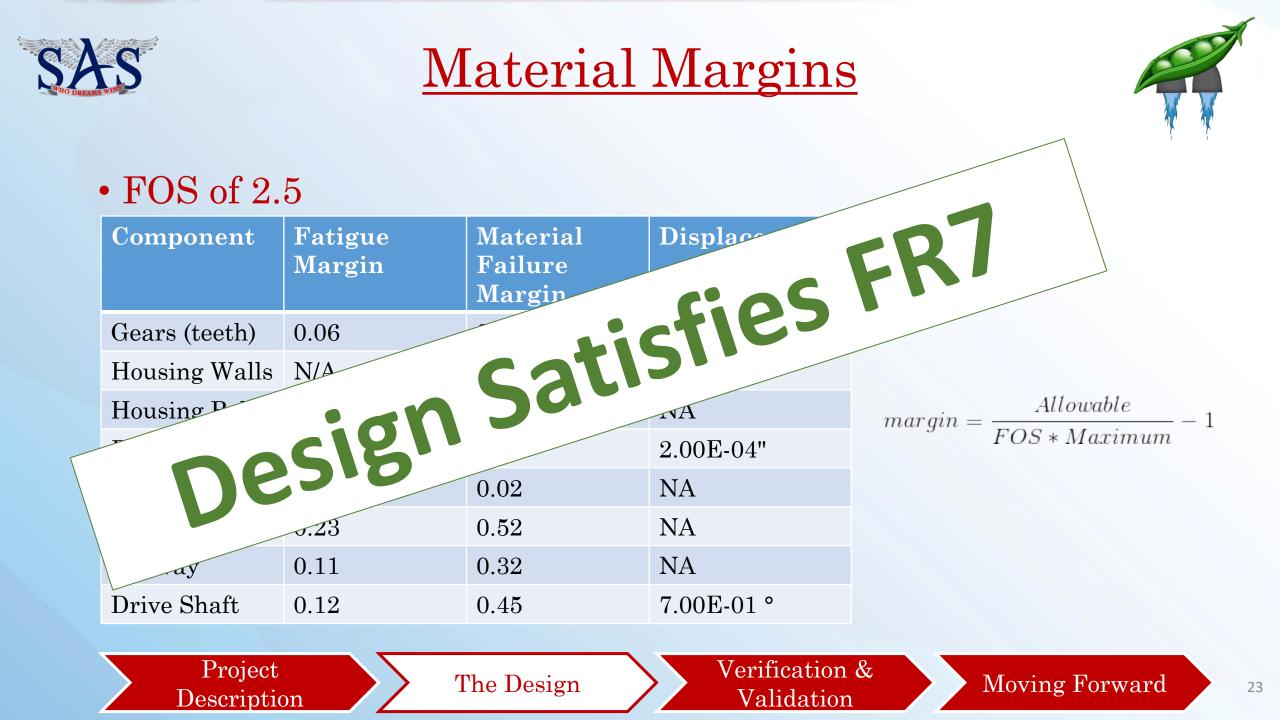
$$\dot{m}_{slip_3} = rac{\pi
ho h_{top}^3 \Delta P_3}{32\mu}$$

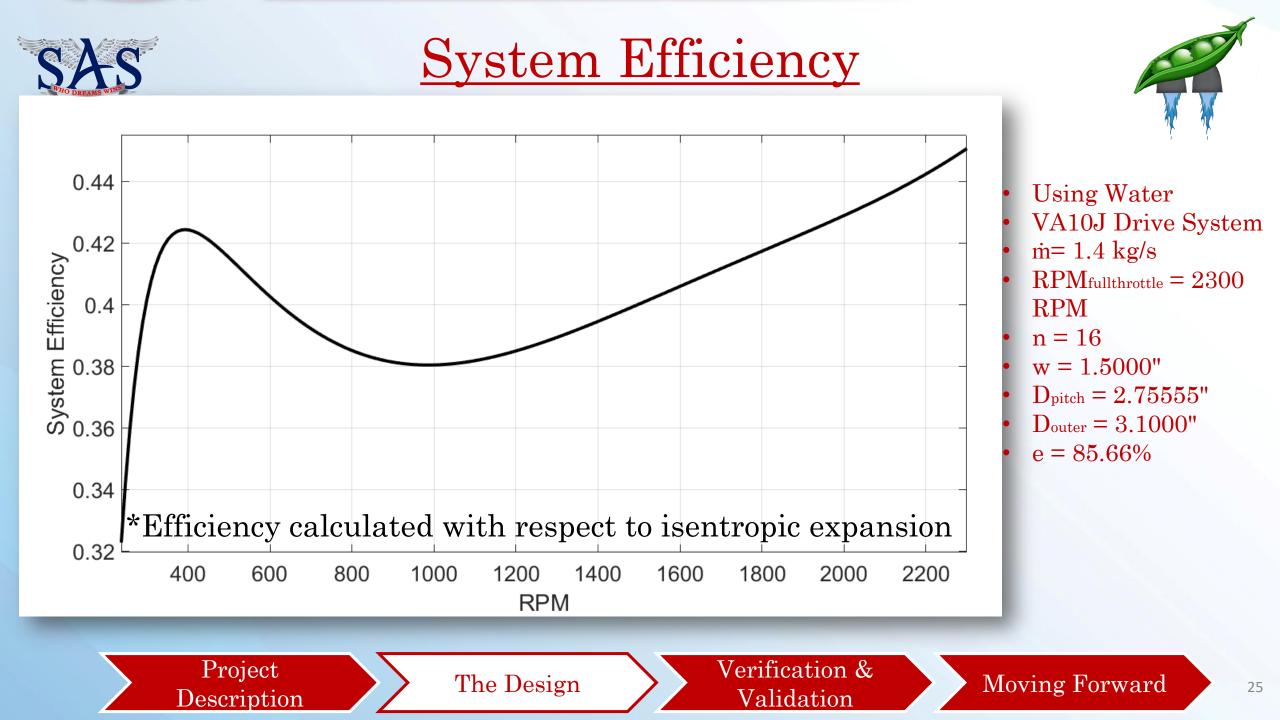

- density of fluid
- \mathcal{V} gear angular velocity
- μ dynamic viscosity of fluid
- w face width of gear
- D pitch diameter of gear
- n number of teeth
- htip clearance between tooth tip and outer housing
- htop clearance between tooth/gear top and upper housing
- Ltip length of tooth tip
- Ltop length across tooth at pitch diameter


Resultant Mass Flow

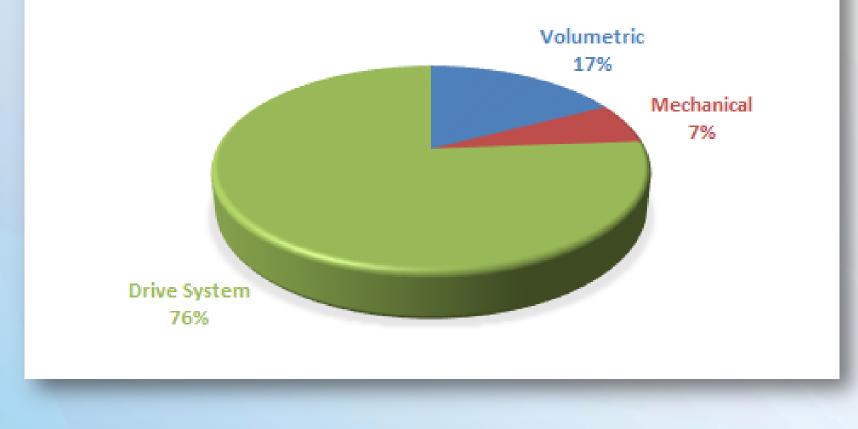





Possible Gear Designs

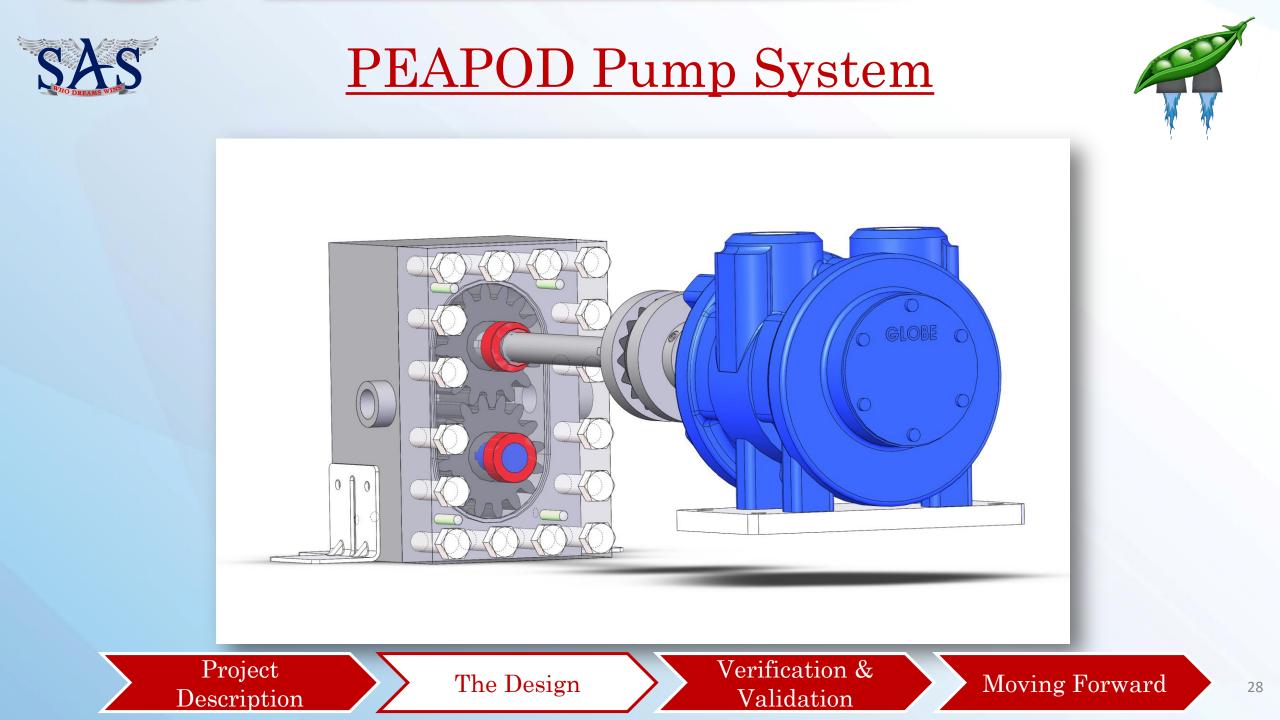


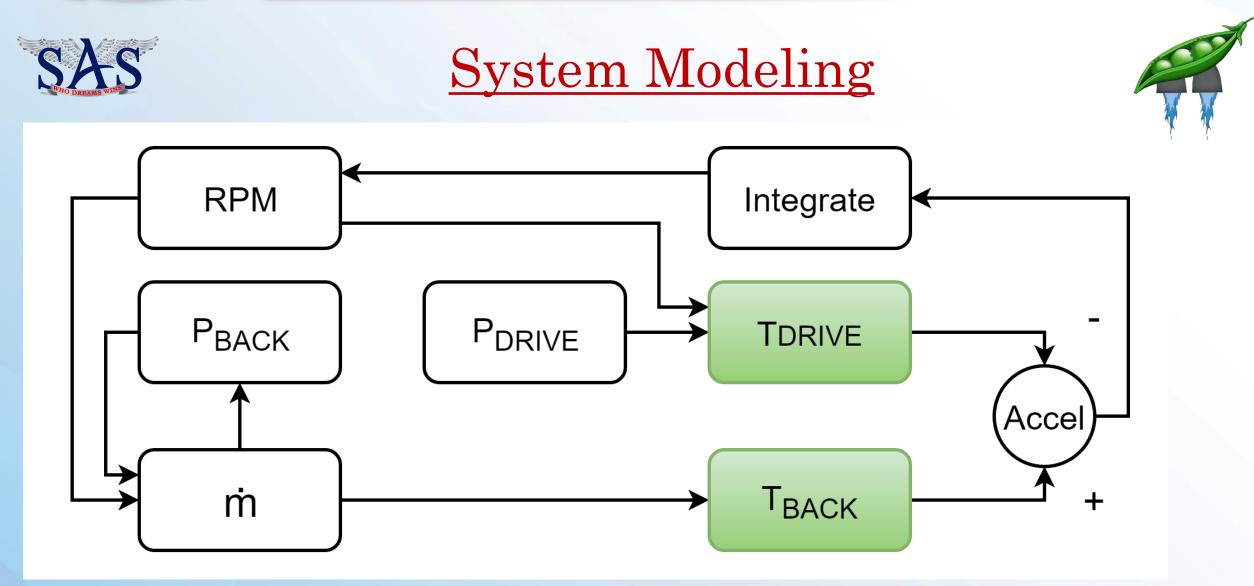
Material Compatibility



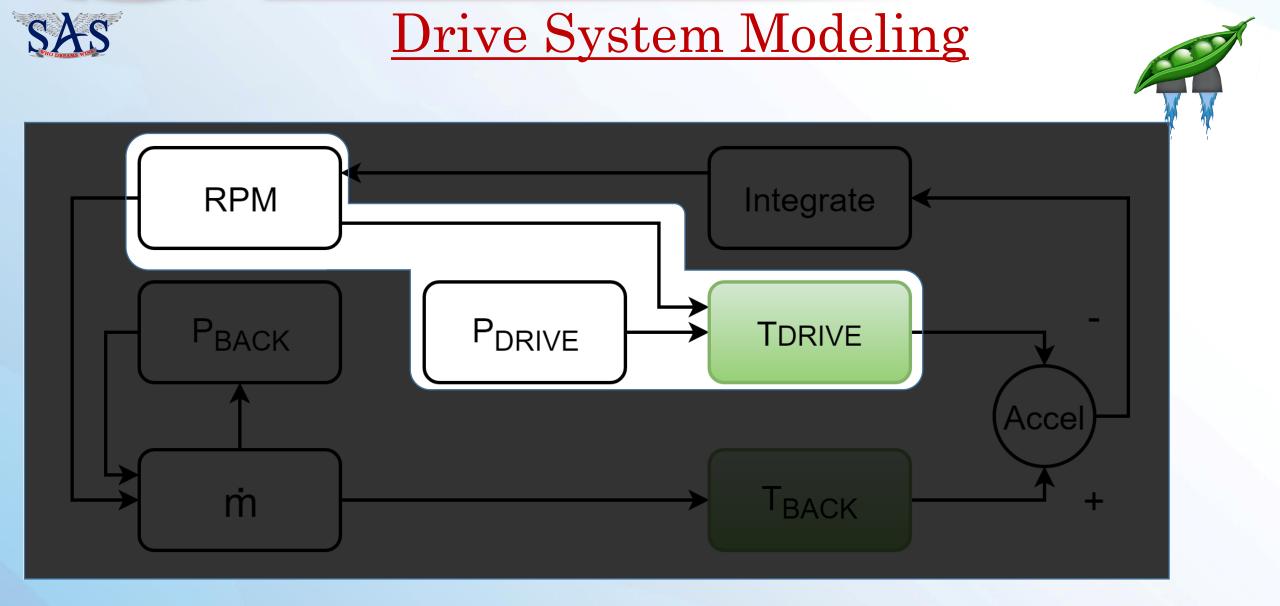
LOSS CONTRIBUTION FROM SYSTEM COMPONENT

The Design

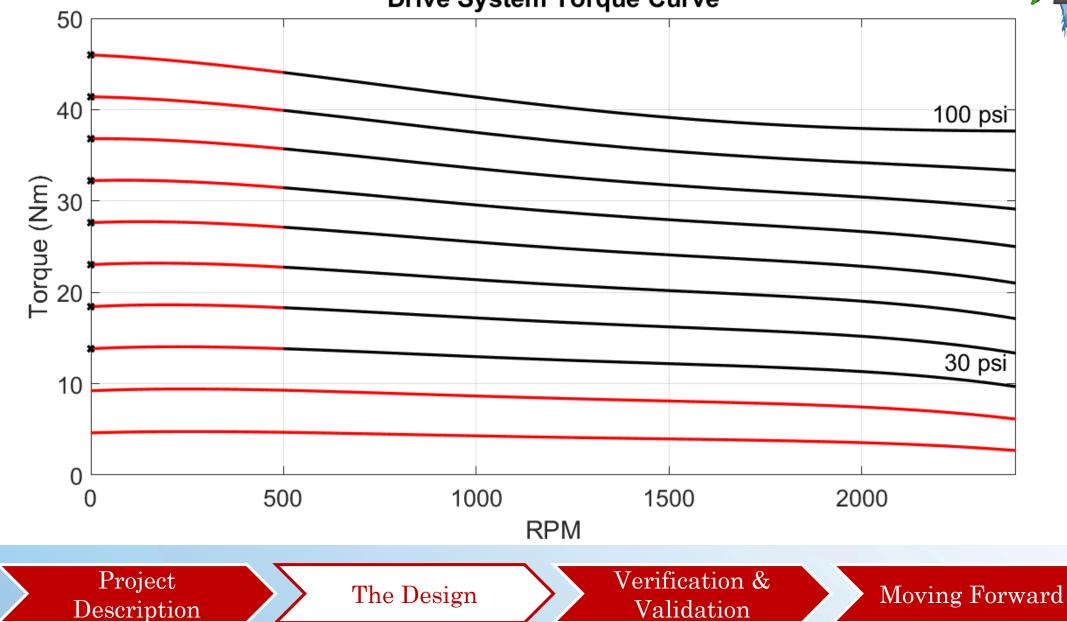


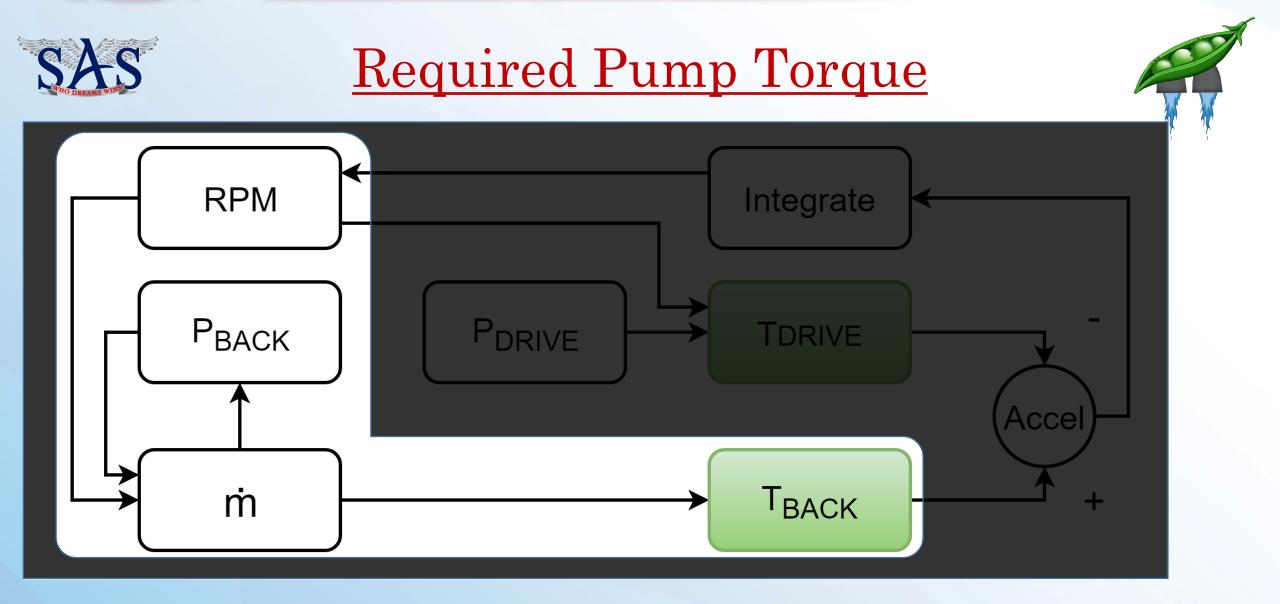


Pump-Drive Compatibility


*Used to model torque as a function of RPM

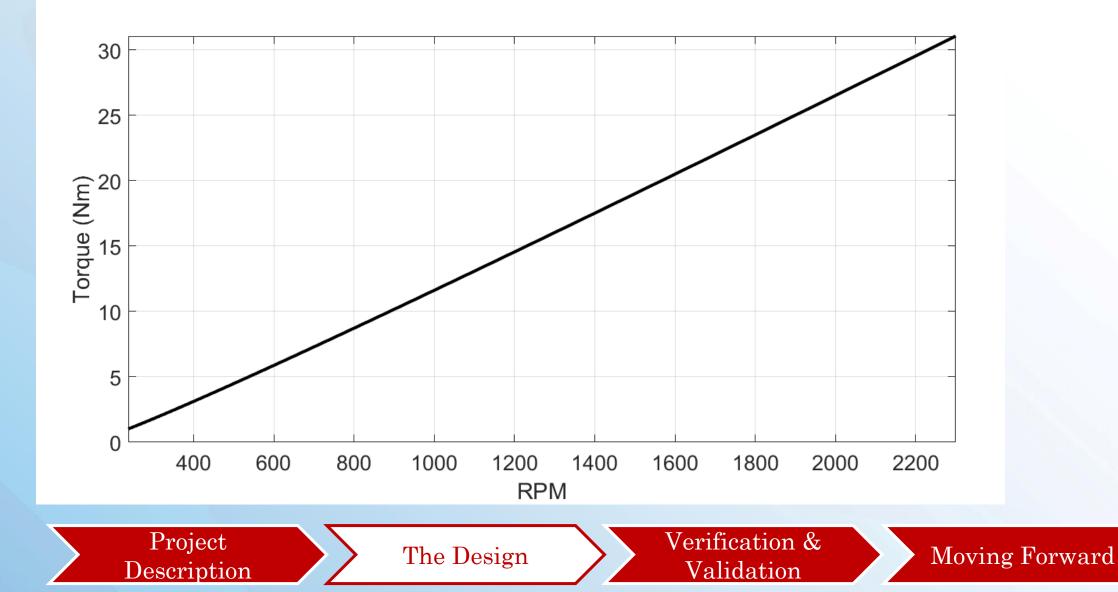
Verification & Validation

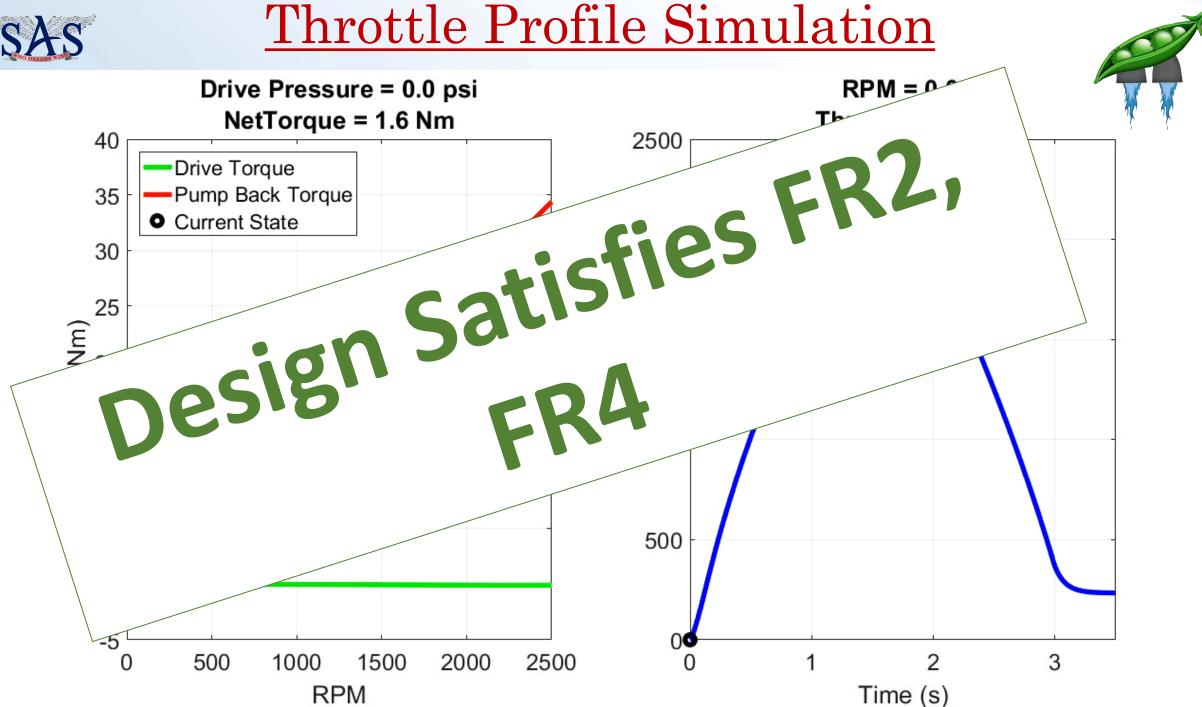


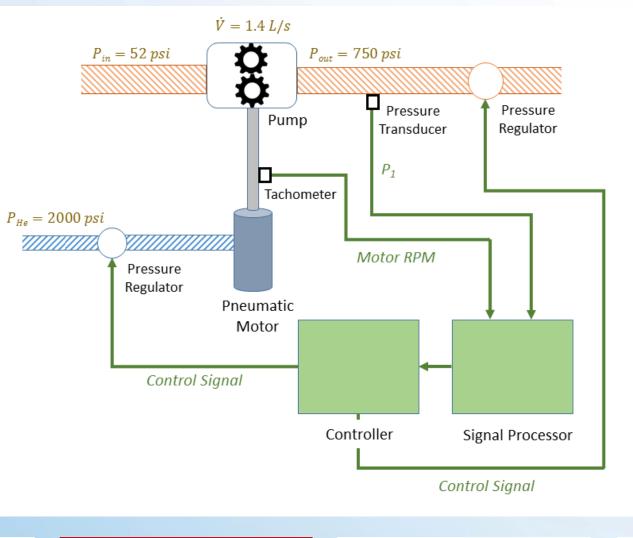


Drive System Modeling

Drive System Torque Curve




Required Pump Torque



33

Project Description

The Design

Verification & Validation

Moving Forward

Interface with user
Throttle manipulation

- User "kill switch"
- Controller
 - Throttle profile
 - Pump control system
- DAQ
 - Data collection and system interface

The Design

• Automated safety

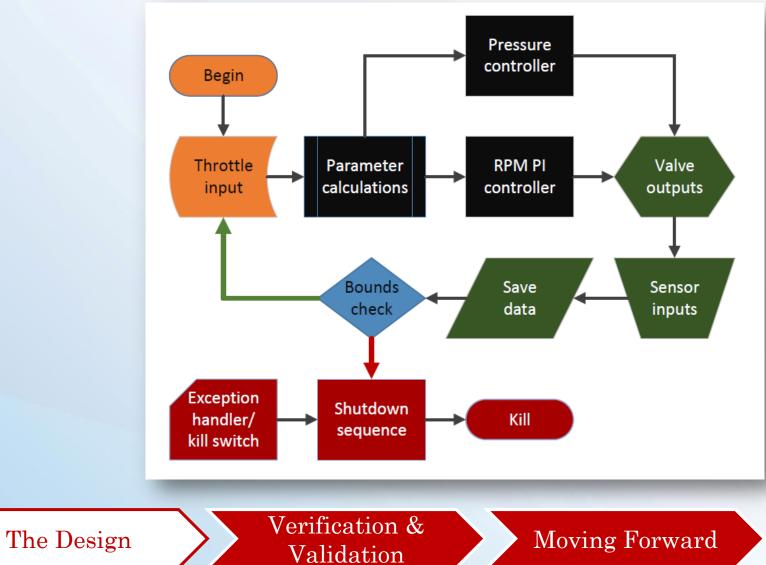
Project

Description

- Exception handling for the DAQ
- Bounds check sensor returns

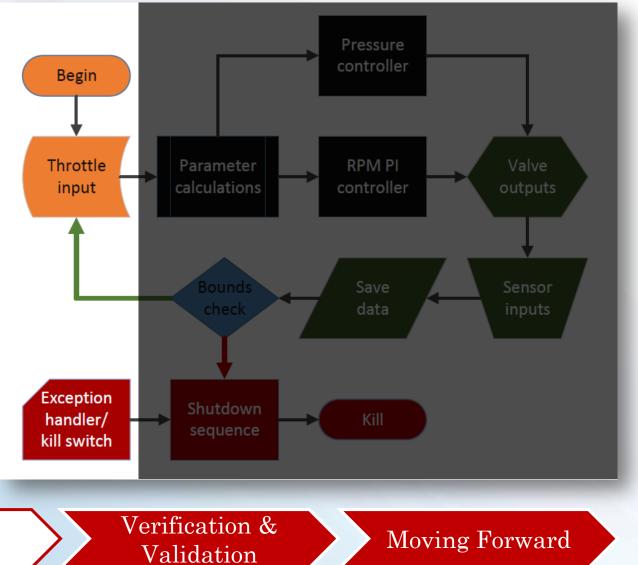
Verification &

Validation



- User interface
- Pump controller
- DAQ system interface
- Safety Bounds checking

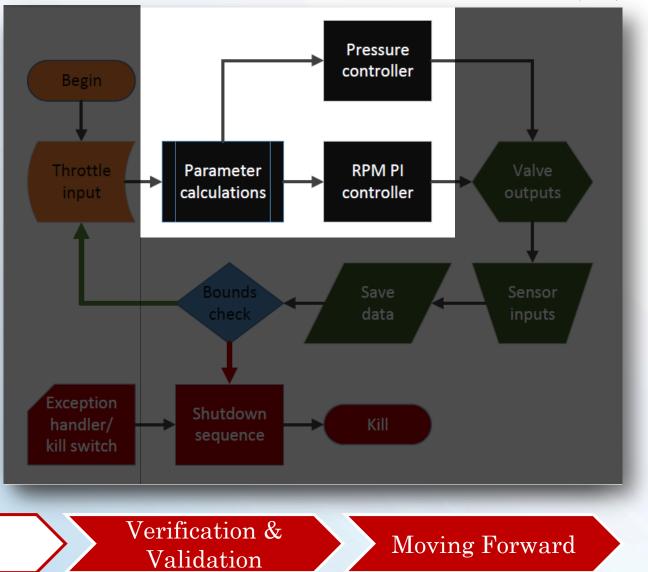
Project



- Throttle control
 - Manual control
 - Automatic sequence

- Manual kill switch
- Data viewing

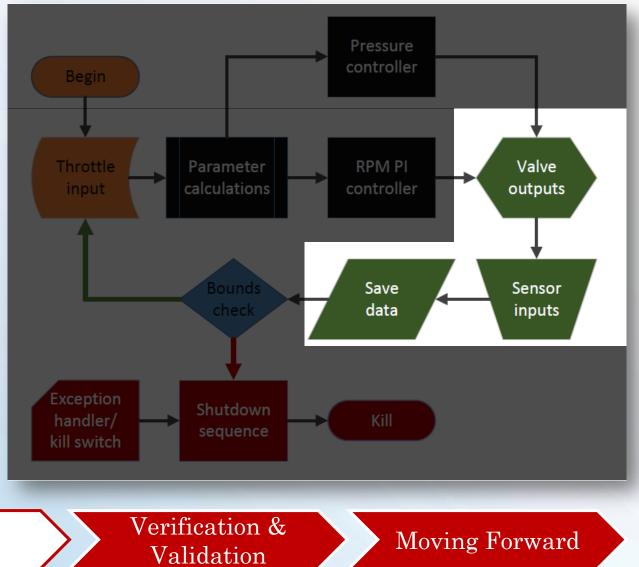
Project



• RPM control

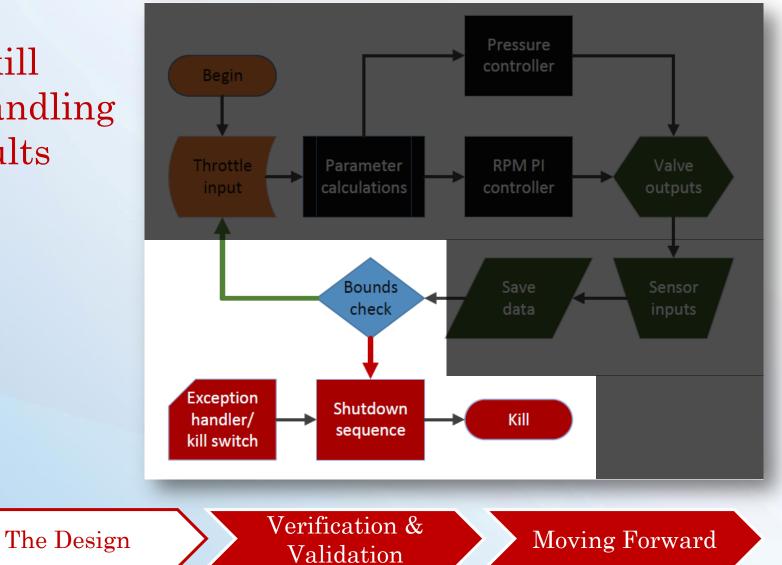
Project

- Pump controller
- Valve control law
- Backpressure control



- Link between LabView and instruments
 - Control signals
 - Data return

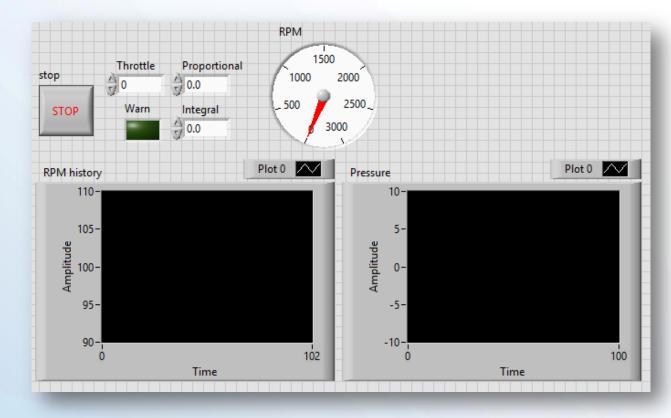
Project



41

- Manual override/kill
- DAQ Exception handling
- Bounds check results
 - Automatic kill

Project

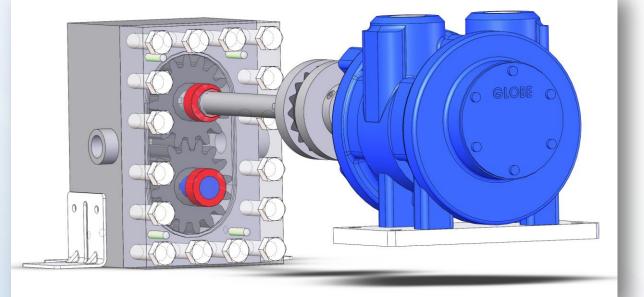


LabView User Interface

- Throttle manual input
- PI gain adjustment
- User safety stop
- RPM gauge and history
- Pressure history

Electronic Requirements

Requirement	Range	Instrument
Regulate drive system input pressure	2-100 psi	Pressure Regulator
Measure pump outlet pressure	$50-800 \mathrm{psi}$	Pressure Transducer
Measure pump drive shaft RPM	230 - 2400 RPM	Encoder/Tachometer/ Tachogenerator



- Max Required Power = 7.5 kW
- Required Torque = 31 Nm
- RPM = 2300
- Total Efficiency = 85.7%
- Sampling Rate = 6.5 kHz
- Slew Rate = < 2 s
- Volumetric Flow Rate = 1.4 L/s

Verification & Validation

Phase 1 – November, December 2016

Simulation & Sensor Testing:

- Electronic Pressure regulator design and testing
- Electronics Calibration
- Mockup Simulations
- Testing Location Validation:
 - 1. Water Flow requirements
 - 2. Air Flow requirements

Phase 2 – January, February 2017

Subsystem Testing:

- Drive System: air motor
 testing, feed pressure
 regulation, solenoid valve
 operation, start-up and shutdown procedures, emergency
 cut-off and venting, helium feed
 verification, measuring
 component slew rates
- Gear Pump System: back pressure regulation, solenoid valve operation

Phase 3 – February, March, April 2017

Full System Testing:

- Motor-Pump coupling and operation
- Pump throttling through drive system electronic pressure regulator
- Validating system slew rate
- Optimization of system control

The Design

Verification & Validation

Nomenclature

SV = Solenoid Valve

MBV = Manual Ball

MR = Manual Regulator

EP = Electronic Pressure

P = Pressure Transducer T = Temperature Sensor

BPR = Back Pressure

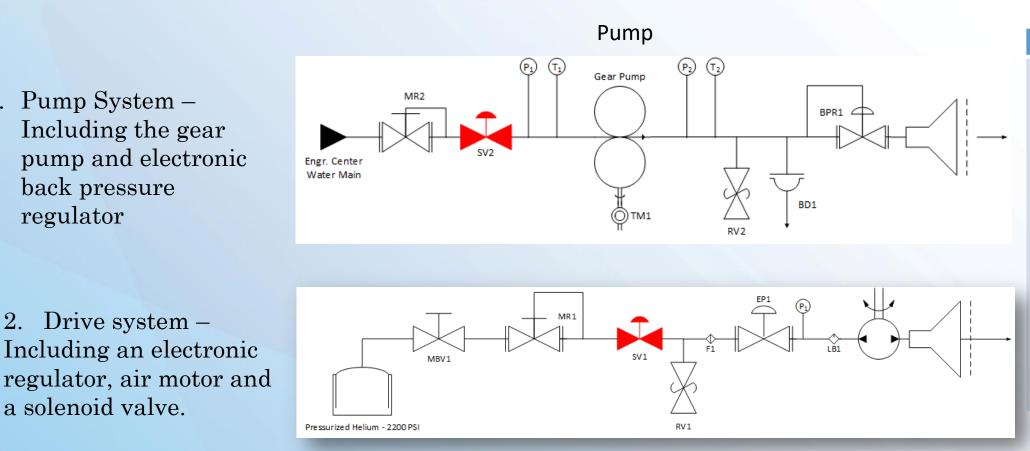
TM = TachometerBD = Burst Disk LB = Lubricator

F = Air Filter

RV = Relief Valve

Valve

Regulator


Regulator

1. Pump System – Including the gear pump and electronic back pressure regulator

2. Drive system –

a solenoid valve.

Including an electronic

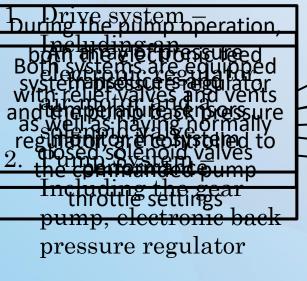
Drive System

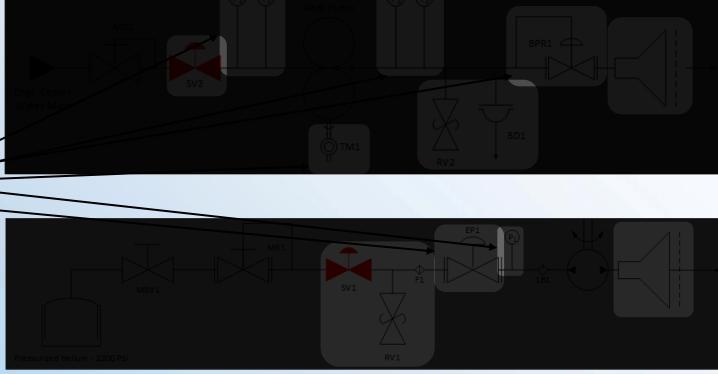
Project Description

The Design

Verification & Validation

47





Nomenclature

SV = Solenoid Valve RV = Relief Valve MBV = Manual Ball Valve MR = Manual Regulator EP = Electronic Pressure Regulator BPR = Back Pressure Regulator BD = Burst Disk LB = Lubricator F = Air Filter P = Pressure Transducer T = Temperature Sensor

Testing will focus on the following two systems:

Project Description

The Design

Verification & Validation

Instrumentation

Instrument	Part #	Specifications	Resolution & Sampling Rate
Pressure Regulator (EP1)	Parker R119-08CG/M2	1"NPT to ¼"NPT 400 cfm 0 to 125 psi	3 psig – Fulfills Reqs.
Pressure Transducer (P1)	Omega PX309-5KG5V	¼"NPT 0-5000 psig	0.08 psig – Fulfills Reqs.
Piezo Pressure Transducer (P2)	PCB 113B24	¹ ⁄4" NPT 0 to 1000 psig	0.02 psig & 1kHz - Fulfills Reqs.
Thermocouples (T1, T2)	Omega TC-T	¾" NPT T Type	1kHz Sample rate
Solenoid Valve – Water (SV1)	Omega SV173	¾"NPT	-
Solenoid Valve – Helium (SV2)	Omega SV172	½"NPT	-
Back Pressure Regulator (BPR1)	Equilibar BDM12S	Max pressure Rating 150 Cv range from.1 14.3 Port Size 1/8	-
Tachometer (TM1)	ABQ A2108	100-6000 RPM Needs a mounting rig & calibration	30 RPM & Analog – Fulfills Reqs

The Design

Verification & Validation

Instrument	Number of channels used	Minimum sampling rate
Pressure Transducer	1	1 kHz
Piezo Pressure Transducer	1	$2.2~\mathrm{kHz}$
Thermocouple	2	1 kHz
Tachometer	1	$1.5~\mathrm{kHz}$
Total	5	$5.7 \mathrm{kS/s}$

NI DAQ specs

• 8 analog inputs

Project

Description

- Sample frequency 50kS/s
- Using 5 channels: 10kS/s/ch
- Worst case: 4 times above the highest minimum sampling rate

The Design

Verification &

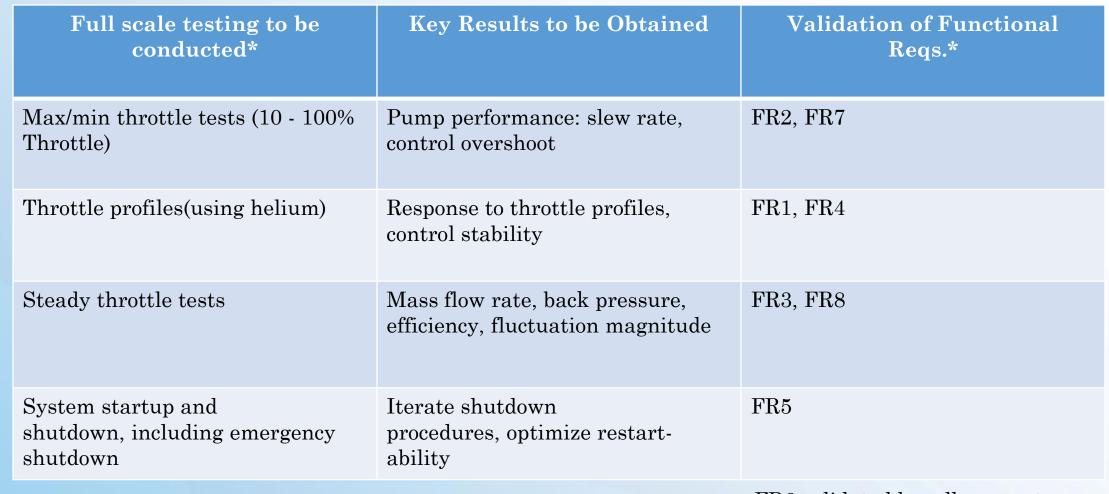
Validation

Moving Forward

Sensor Error Stack-up

Instrument	Error in %
Pressure Transducer	.01 %
Tachometer	0.0015~%
DAQ	0.0015 %
Total	.023 %

Total error will translate to $\pm 10^{-4}$ kg/s for mass flow rate


The Design

Verification & Validation

*All tests will be conducted with one pump and water

Project

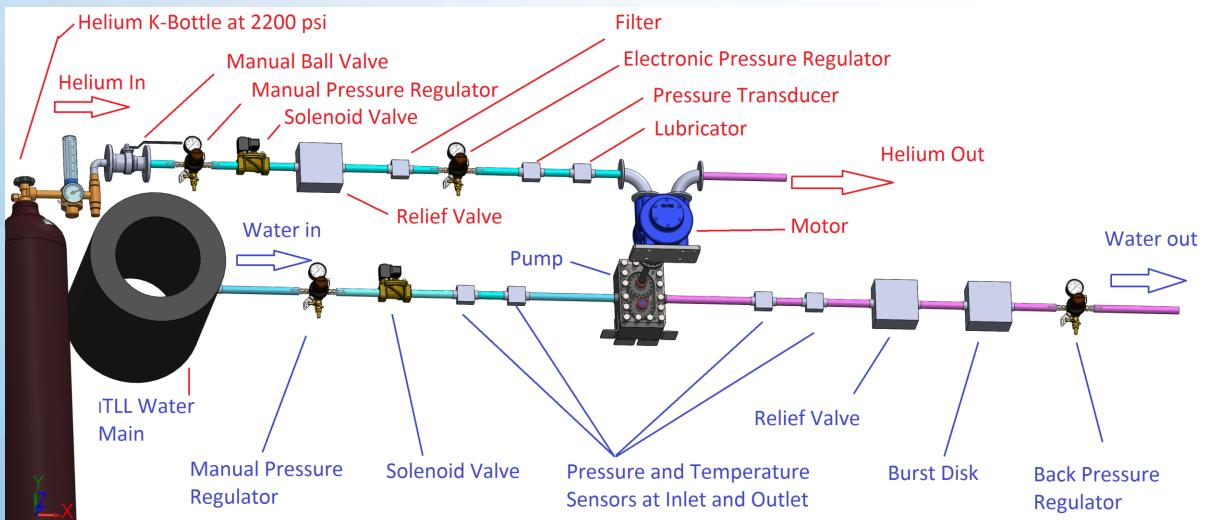
Description

*See slides 85-87 for list and description of Functional and Derived Reqs.

FR6 validated by adherence to Boeing D2-113073-1

Moving Forward

Verification &


Validation

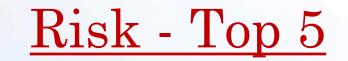
53

Preliminary CAD Design: Full System

Risks and Risk Mitigation

- 61 possible risks identified
 - Including individual component failure modes
- Evaluated these risks against:
 - Cost
 - Schedule
 - Technical

Project


- Safety
- Identified <u>Top 5 Risks</u>
 - Mitigation plans were developed

- 1. Tolerance Stack-up Does Not Meet Project Requirements
- 2. Driveshaft Seal Failure/Leakage
- 3. Electronic Back Pressure Regulator Failure
- 4. Electronic Helium Pressure Regulator Failure
- 5. Over Budget Due to Component Purchases

Additive Risk Matrix		Severity					
			1	2	3	4	5
		Cost	Minimal or no impact	<1% of budget to replace	<5% of budget to replace	<10% of budget to replace	>10% of budget to replace
		Schedule	Minimal or no impact	Additional activities required but able to meet key deadlines (few hrs - 1d)	Minor schedule slip; will miss internal deadline (1d - 3d)	Critical path affected (+3d)	Cannot achieve milestone
		Technical	Minimal or no impact Minor performance shortfall, same approach retained Moderate performance but work arounds available Unacceptable, but arounds available				Unacceptable; no alternatives exist
		Safety	Minimal or no impact	Could result in: injury or occupational illness not resulting in a lost work day day(s)		Could result in: permanent partial disability,injuries or occupational illness	Could result in: death or permanent total disability
Likelihood			1	2	3	4	5
5	Near certainty >95%	5					
4	Highly Likely >65%	4					
3	Likely >35%	3					
2	Low likelihood <35%	2					
1	Not likely <10%	1					

Project Description

Risk Mitigation

Risk: <u>Tolerance Stack-up Does Not Meet Project Requirements</u>

Description of Risk: If the up does not meet required components may have to meet requirements, or the re-manufactured.	ements, then be re-adjusted to	Risk Type Cost X Technical Safety Schedule	5 4 3 2 1	1 2	Severit	4 X 1 2	5		
	Risk Reducti	on Plan							
Action/Event	Success Criteria						Risk level if successful		
 Speak with the manufacturer on the importance of meeting the specific tolerances Quality inspection of components following manufacturing 	Communication is we Inspection of compon clearance requirement	ents yields par			M	edi Ledi Low	um		

Risk Mitigation

Risk: Driveshaft Seal Failure/Leakage

Description of Risk: If the leak, then the seals may remade or an alternative be manufactured.	be required to be	Risk Type Cost X Technical Safety X Schedule	Likelihood I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2	Severity 3 4 5 X 0 1/2 0 3 0 0				
	Risk Reducti	on Plan						
Action/Event	Su	Risk level if successful						
1. Inspect seals for quality upon receipt	Seals are void of defect u	Medium						
2. Ensure seals are properly fitted and secured when testing	Seals are in working order and are fitted according to Medium design specifications							
3. Continually inspect seals after each test	Seals show no signs of w	ear upon comple	tion of tests	Medium - Low				

Risk: <u>Electronic Back Pressure Regulator Failure</u>

Description of Risk: If the pressure regulator fails to new regulator must be pre- control system/algorithme designed.	Risk Type X Cost X Technical Safety Schedule	Likelihood	5 4 3 2 1	1	2	Severit	ty 4	5 X 1	
	Risk Reduct	ion Plan							
Action/Event	Success Criteria Risk level in successful								
1. The outlet conditions are readily monitored to not exceed the component specifications	Pressure and voltage the component specifi		to no	t ex	cee	d		ediu High	

Risk: <u>Electronic Helium Pressure Regulator Failure</u>

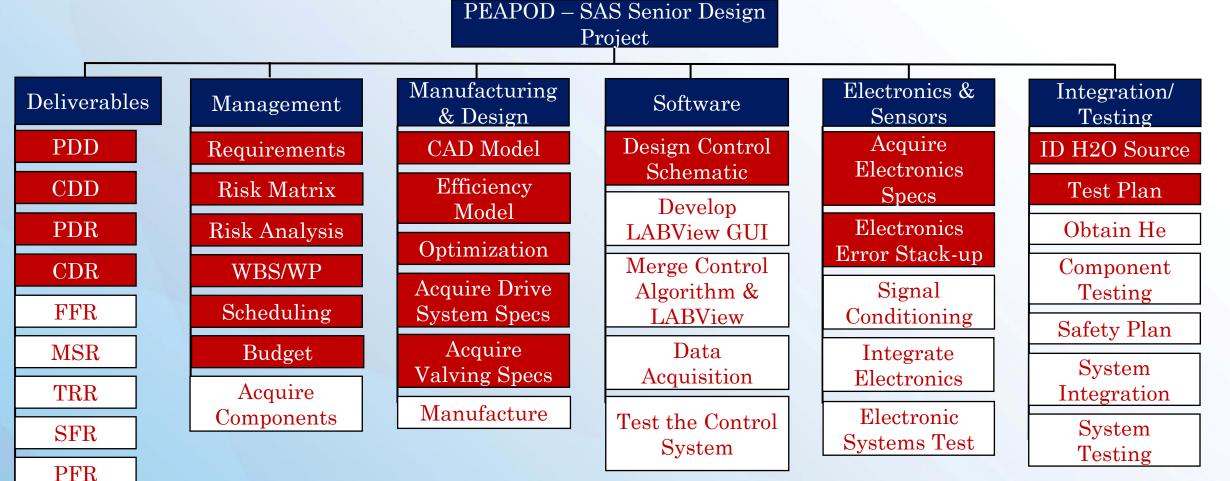
Description of Risk: If the helium pressure regulator to the needed requirement pressure regulator is requirement purchased.	or fails to operate nts, then a new	Risk Type X Cost X Technical Safety Schedule	Tikelihood 1 2 5 4 4 4 3 2 2 2 1 1	Severity 3 4 5 4 5 4 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7
	Risk Reducti	on Plan		
Action/Event	Sı	Risk level if successful		
1. The helium feed system is monitored and designed as not to exceed the component specifications before the electronic regulator	Pressure and voltage the component specifi		to not exceed	Medium - High

Risk: Over Budget Due to Component Purchases

Description of Risk: If the project is over budget due to purchasing required components, then the system/component may be required to be re-designed, or the quality of components may need be reduced.

Risk Reduction Plan							
Action/Event	Success Criteria	Risk level if successful					
 Create and continually update a detailed budget Look for avenues to purchase/borrow parts at discounted rates 	Budget continues to stay below allotted amount	Medium - High Medium					

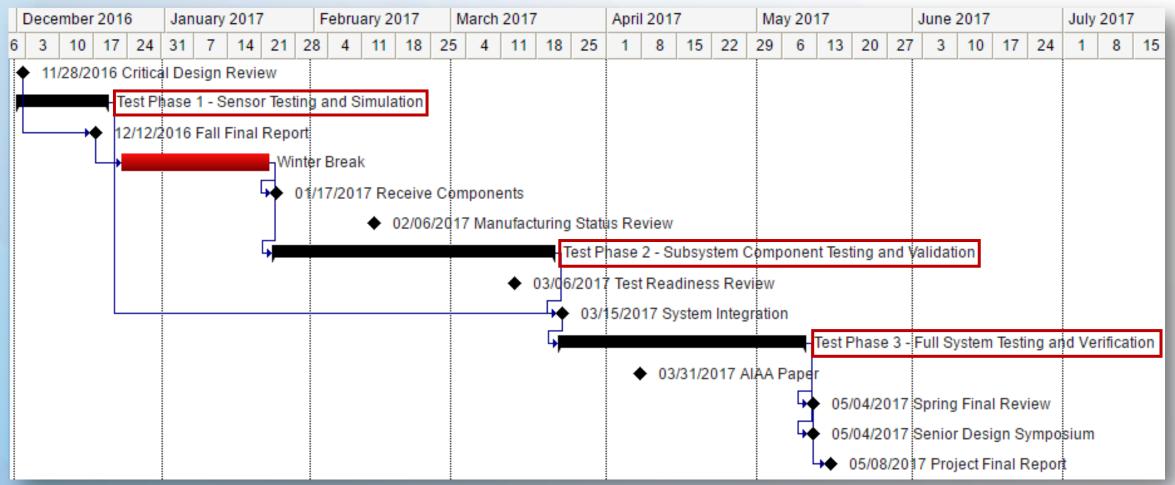
Moving Forward

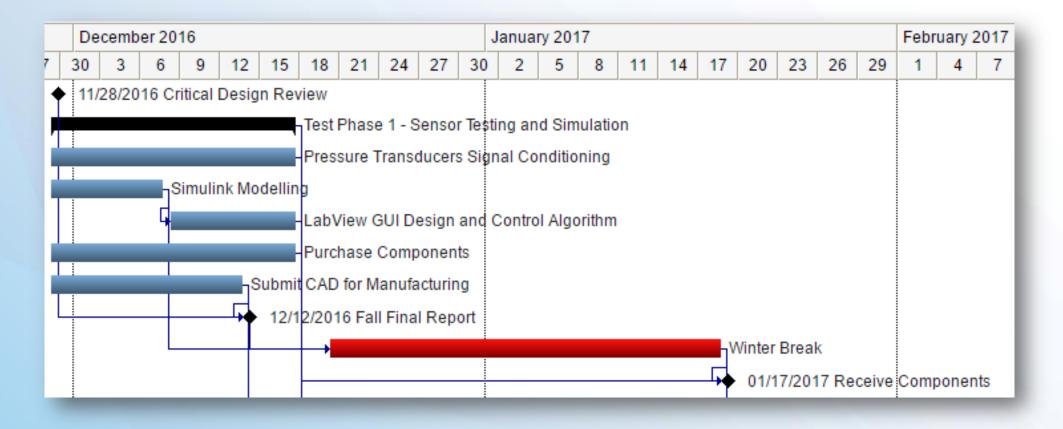


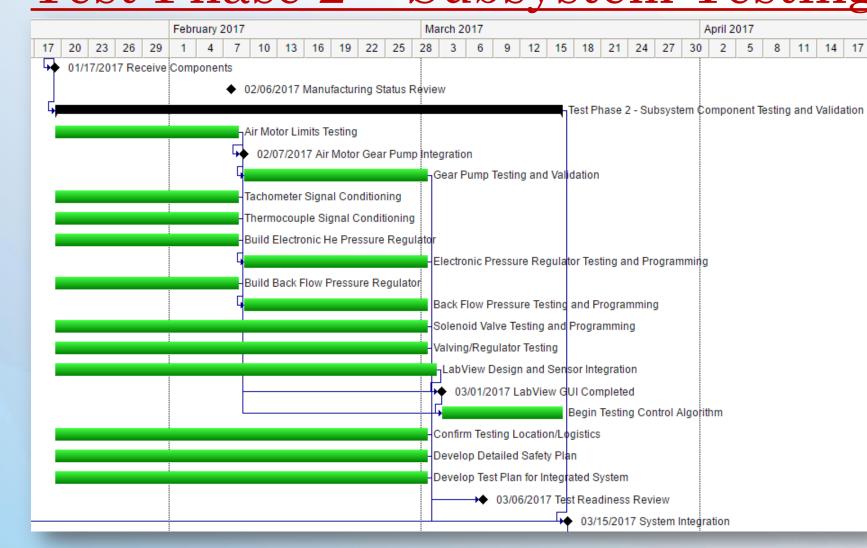
SDS

AIAA

Work Breakdown Structure




Work Plan/Schedule

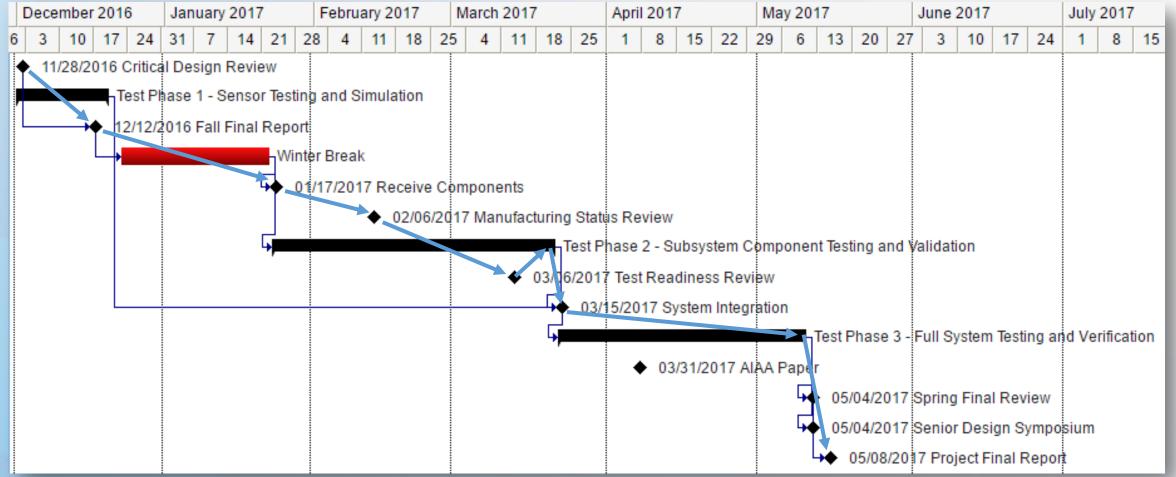

Test Phase 1 – Sensor Testing & Simulation

Project Description The Design Verification & Moving Forward

Project Description

April 2017 May 2017 June 18 21 24 27 11 14 17 20 23 26 29 2 8 11 14 17 20 23 26 29 30 2 5 8 5 1 Test Phase 2 - Subsystem Component Testing and Validation st Readiness Review 03/15/2017 System Integration Test Phase 3 - Full System Testing and Verification Acquire Testing/Safety Set-up Test Various Profiles Perfect Control Algorithm Requirements Validation and Verification 03/31/2017 AIAA Paper ♦ 05/04/2017 Spring Final Review 05/04/2017 Senior Design Symposium → 05/08/2017 Project Final Report

Project Description



\$5,000: SAS (Secured)
\$3,000: EHP (Secured)
\$3,000: Fund transfer (via EEF, unverified)
\$11,000: Total possible

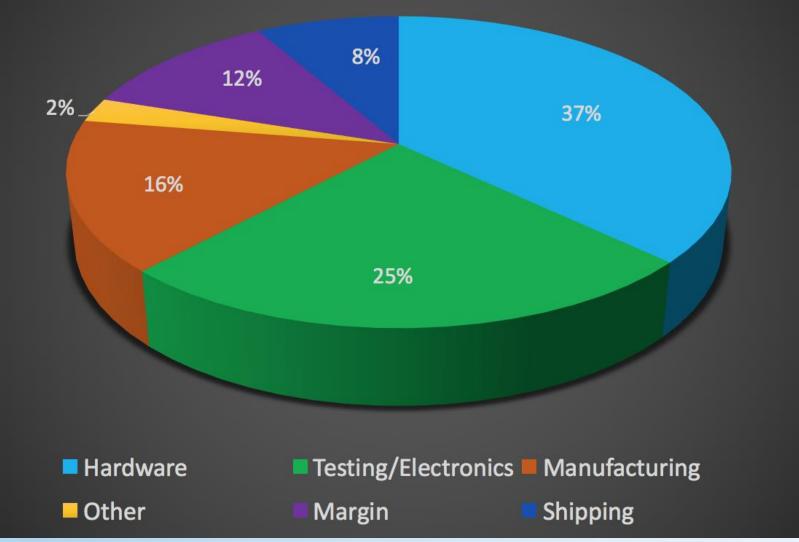
Legend

Hardware

Manufacturing

Other/Software

Testing/electronics


	Jnit (Part Numb 🔻	Pric	e 🔻	Quantity 🔻		Subtotal	\blacksquare	Shipping	\blacksquare	Discount	▼	Tot	al 🔻
Wire		\$	-	20	_	\$	-		0		0%	\$	-
Microcontroller		\$	-	1		\$	-		0		0%	\$	-
Gear Block	1319T4	-	89.02	4	-		56.08		13.35		0%	\$	369.4
Panel	1319T4		89.02	1	_		89.02		13.35		0%	\$	102.3
Housing	8983K198	· ·	57.41	1	_	•	57.41	\$	8.61		0%	\$	66.0
Nuts and Bolts	As Needed		35.00	1	_	•	35.00		0		0%	\$	35.0
EDMing		\$	750.00	1	L		50.00		0		0%	\$	750.0
Machining Metals	As Needed		-		_	\$	-		0		0%	\$	-
Pressure Transducers	PX309-5KG5V	\$	-	4		\$	-		0		0%	\$	-
Pressure Transducers	YX-98071-23		312.00	1	L		12.00		46.80		0%	\$	358.8
Pressure Regulator	21U842	\$	221.25	1	L		21.25	\$ 3	33.19		0%	\$	254.4
Pressure Regulator 2	VIC0781-0528	\$	280.00	1	L	\$ 28	80.00	\$ 4	42.00		0%	\$	322.0
Line Hookups	3/8" Lines	\$	-	2	2	\$	-		0		0%	\$	-
Drive System	VA10 J	\$	1,095.00	1	L	\$ 1,09	95.00	\$ 1	54.25		0%	\$1	,259.2
Drive System Filter	3248T11	\$	78.10	1	L	\$ 7	78.10	\$	11.72		0%	\$	89.8
Drive System Lube	8520T19	\$	82.59	1	L	\$ 8	82.59	\$	12.39		0%	\$	94.9
Drive System Oil	1298K72	\$	24.59	1	L	\$ 2	24.59	\$	3.69		0%	\$	28.2
Regulator		\$	-	1	L	\$	-		0		0%	\$	-
Teflon Seal	5154T31	\$	103.76	1	L	\$ 10	03.76	\$	15.56		0%	\$	119.3
Ball Bearings	6909UU	\$	19.49	1	L	\$ 1	19.49	\$	2.92		0%	\$	22.4
Water Drum	56W55R	\$	41.33	1	L	\$ 4	41.33	\$	6.20		0%	\$	47.5
Krytox 240 Lubricant	240AD-2OZ	\$	230.38	1	L	\$ 23	30.38	\$	34.56		0%	\$	264.9
Tooling for gears		\$	500.00	1	L	\$ 50	00.00		0		0%	\$	500.0
Solenoid Valve	SV170	\$	367.00	1	L	\$ 36	67.00	\$	55.05		0%	\$	422.0
Tachometer	RL50-850	\$	469.00	1	L	\$ 46	69.00	\$	70.35		0%	\$	539.3
Binding Reports	NA	\$	100.00	2	2	\$ 20	00.00		0		0%	\$	200.0
Microsoft Office	NA	\$	-	1	L	\$	-		0		0%	\$	-
NI LabView	NA	\$	-	1	L	\$	-		0		0%	\$	-
Matlab/Simulink	NA	\$	-	1	_	\$	-		0		0%	\$	-
Solidworks 2016	NA	\$	-	1	_	\$	-		0		0%	\$	-
Gantter	NA	\$	-	1	L	\$	-		0		0%	\$	-
Shaft Coupler	6507K64	\$	25.15	2	2	\$ 5	50.30	\$	3.77		0%	\$	54.0
Shaft Hub	6507K73	\$	23.19	1		\$ 2	23.19	\$	3.48		0%	\$	26.6
DC Motor	PK256-02A		78.00	2		-	56.00		11.70		0%	\$	167.7
Helium Piping	62145552		17.09	1		-	17.09	\$	2.56		0%	\$	19.6
Downstream Helium	438288		16.52	1		-	16.52	•	0		0%	\$	16.5
Pressure Regulator	214716		73.97		_		73.97		0		0%	\$	73.9
Tee's	181943		4.83	5			24.15		0		0%	\$	24.1
Helium Relief Valve	15x915		50.50	1			50.50	\$	7.58		0%	\$	58.0
Water Relief Valve	RL50-850		69.00	1	_		59.00		10.35		0%	\$	79.3
Piezzo Transducer	113B24		590.00		L		90.00		88.50		0%	\$	678.5
Piping	301337		20.28				20.28	*	0		0%	\$	20.2

Subtotal	\$ 7,064.93	
Тах	0	
Total	\$ 7,064.93	
Margin	\$ 935.07	13.2%
Total w/ Margin	\$ 8,000.00	

PEAPOD Budget Allocation

Questions?

Table of Contents

Presentation				
Organizational Chart	Hypergolic Compatibility	Sensor Error Stack-up		
• <u>CONOPs</u>	<u>System Efficiency</u>	<u>Final Testing</u>		
Levels of Success	• <u>System Model</u>	• <u>CAD – Full system</u>		
• <u>FBD</u>	<u>Required Pump Torque</u>	• <u>Risk Top 5</u>		
Drive & Pump Assembly	<u>Throttle Profile Simulation</u>	• <u>Risk Matrix</u>		
• <u>CPEs</u>	<u>Software Requirements</u>	<u>Risk Mitigation</u>		
Volumetric Losses	<u>Software Overview</u>	• <u>WBS</u>		
Mass Flow	<u>Electronics Requirements</u>	• <u>Schedule</u>		
Possible Gear Designs	Key System Parameters	• <u>Budget</u>		
Design Selection (Gear Picture)	Validation Schedule	<u>References</u>		
Pump Efficiency	Fluid Schematic	• <u>Backup</u>		
Drive System Choice	Instrumentation			
<u>Material Margins</u>	<u>Sensor Sampling</u>			

Back-Up Table of Contents

Back-Up Slides

- <u>FR/DR</u>
- <u>Electronic Fluid Schematic</u>
- <u>Alternate Helium Feed System</u>
- Phases of Testing
- <u>Final Testing</u>
- <u>Standard Testing Procedure</u>
- <u>Safety Set-up</u>
- <u>NPT Threading</u>
- <u>Example Throttle Profile</u>
- <u>PI Control Code Flow</u>
- <u>Software Specifics</u>
- Detailed Code Diagram
- $\underline{CAD COTS}$
- <u>CAD Gear Seating</u>
- <u>Tolerance Sensitivity</u>
- <u>Tolerances Stack-Up</u>

- <u>Mechanical Analysis Drive Shaft</u>
- <u>Mechanical Analysis Keyway</u>
- <u>Mechanical Analysis Gear Teeth</u>
- <u>Mechanical Analysis Housing</u>
- <u>Mechanical Analysis Walls</u>
- Fluid Models
- <u>Thermal Model</u>
- <u>Simulating System</u>
- <u>Simulating System Assumptions</u>
- <u>Full Budget</u>
- <u>Risk Metrics</u>
- High Severity Risk
- Avg. Severity Risk
- $\underline{\text{Risk} \text{Cost}}$
- <u>Risk Technical</u>
- <u>Risk Schedule</u>

- <u>Risk Safety</u>
- Linear Drive System Model
- <u>Control Requirements</u>
- <u>AC to DC</u>
- Pressure Regulator Design
- <u>Signal Processing</u>
- <u>Gear Block</u>
- Pressure Transducer
- <u>Piezo Pressure Transducer</u>
- <u>Tachometer</u>
- <u>Thermocouple</u>
- <u>Pressure Regulator</u>
- <u>BPR</u>
- <u>Step Motor</u>

- [1] "Material Compatibility with Liquid Rocket Propellants" Boeing, D2-113073-1.
- [2] "Rubber Chemical Resistance Chart". MYKIN Inc. http://mykin.com/rubber-chemical-resistance-chart-6
- [3] <u>https://s-media-cache-ak0.pinimg.com/736x/17/14/d1/1714d1aa8306c95d2c4a7b86561bb800.jpg</u>
- [4] Kundu Pijush, K., Ira M. Cohen, P. S. Ayyaswamy, and Howard H. Hu. Fluid Mechanics. Burlington, MA: Academic, 2010. Print.
- [5] "Chapter 14: General Spur Gear Theory; Spur Gears", Fundamentals of Machine Elements, 3rd ed. https://www3.nd.edu/~manufact/FME_pdf_files/FME3_Ch14.pdf
- [6] "Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth", American National Standard ANSI-AGMA 2001-D04 <u>http://wp.kntu.ac.ir/asgari/AGMA%202001-D04.pdf</u>
- [7] "A Study of Friction Loss For Spur Gear Teeth", Tso, Lu-nien, Monterey, California: US Naval Postgraduate School http://calhoun.nps.edu/bitstream/handle/10945/13158/studyoffrictionl00tsol.pdf?sequence=1
- [8] "Roark's Formulas for Stress and Strain, ed. 7", Pages 502 and 508 http://materiales.azc.uam.mx/gjl/Clases/MA10_I/Roark's%20formulas%20for%20stress%20and%20strain.pdf
- [9] "Lecture 7: Torsion of Circular Cross Section", Felippa, Carlos, http://www.colorado.edu/engineering/CAS/courses.d/Structures.d/IAST.Lect07.d/IAST.Lect07.pdf
- [10] "Cast Iron Properties", Dempsey, Jack, http://www.anvilfire.com/article.php?bodyName=/FAQs/cast_iron.htm
- [11] "Useful Tables: Thread Calcs", RoyMech, http://www.roymech.co.uk/Useful_Tables/Screws/Thread_Calcs.html
- [12] "Useful Tables: Gear Efficiencies", RoyMech, http://www.roymech.co.uk/Useful Tables/Drive/Gear_Efficiency.html
- *See Budget for datasheet references for drive system, electronics, etc

Backup Slides

	Design Requirements	Description	Validation/Verification
	FR1	Pneumatically Driven	
DREAMS W	DR1.1	He at 2200 psi	Final Testing
	FR2	Throttleable	
	DR2.1	*0.14-1.4 L/s volumetric flow rate	CFD Model and Final Testing
	DR2.2	750 psi max outlet pressure	CFD Model and Final Testing
	DR2.3	Maximum 15 psi oscillations	CFD Model and Final Testing
	DR2.4	O/F = 2	CFD Model and Final Testing
	FR3	Outlet Pressure of 750 PSI	
	DR3.1		Pressure transducer
	FR4	Run throttle profile	
	DR4.1	Slew rate< 2 s	Final Testing
	DR4.2	120 seconds	Final Testing
	DR4.3	Start w/ 0 kg/s	Final Testing
	FR5	Pump is restart-able	
	DR5.1		Testing

*Corresponds to 2 kg/s mass flow rate of NTO and 1 kg/s mass flow rate of UDMH₂9

Design Requirements	Description	Validation/Verification
FR6	Material compatibility	
DR6.1	UDMH and NTO	Adherence to Material info
FR7	FOS = 2.5	FEM and structural Analysis
DR3.1	UDMH and NTO	Adherence to Material info
FR8	75% Efficiency at full throttle	
DR4.1		

Functional and Design Requirements

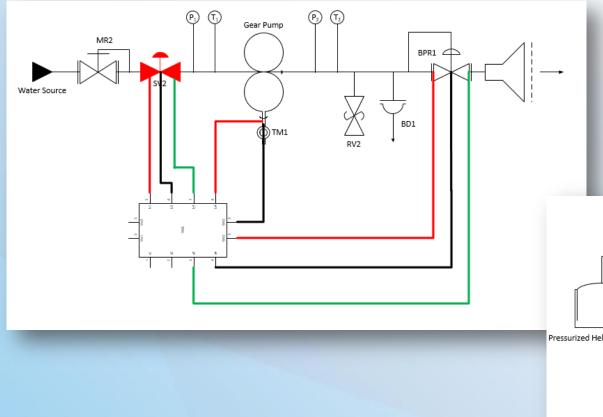
- FR 1 The pump shall be pneumatically driven using compressed helium.
 - DR 1.1 The drive system of the pump shall be powered using room temperature, compressed helium at a pressure between 2000 psi and 6000 psi.
- FR 2 The fuel streams shall be individually, digitally controlled and throttled from 10% to 100% of full throttle
 - DR 2.1 A digital throttle shall be implemented to individually control the mass flow rate of the propellants. The total mass flow rates of the propellants must vary from 3.0 kg/s to 0.3 kg/s.
 - DR 2.2 The target/nominal O/F ratio shall be 2.
- FR 3 The pump shall deliver a 750 ± 15 psi outlet pressure
 - DR 3.1 At full throttle, the pump shall be designed to maintain an outlet pressure 750 psi. The outlet pressure of the pump shall oscillate with an amplitude of less than 15 psi at all throttle settings.

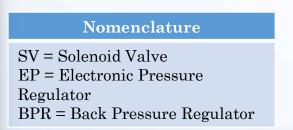
Functional and Design Requirements

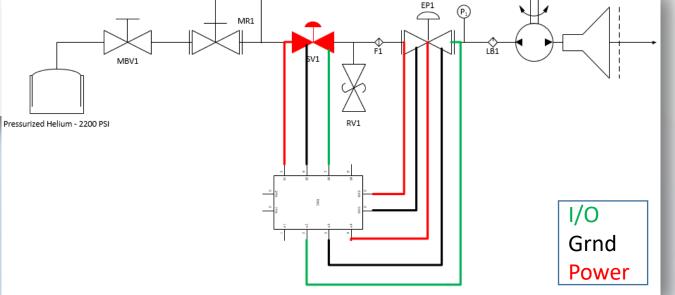
- FR 4 The pump shall be able to run a provided throttle profile for the full duration of an upper stage burn
 - DR 4.1 The pump must be designed such that it can be run for the full duration of a 500 second burn.
- FR 5 The pump system shall have the ability to be restarted
 - DR 5.1 The outlet pressure and mass flow rate of the pump shall reach the desired setting within 1 second of pump start-up. If this cannot be achieved, the client has specified that a start-up transient of 2 seconds would be acceptable, although less desirable.
 - DR 5.2 The pump must be designed such that it can be started from 0 mass flow rate.

Functional and Design Requirements

- FR 6 The pump system shall be constructed from materials that are compatible with the client-specified hypergolic propellants
 - DR 6.1 The pump system shall be manufactured using materials that are compatible with dinitrogen tetroxide (NTO) and unsymmetrical dimethyldydrazine (UDMH).
- FR 7 The pump system shall designed and manufactured such that a structural factor of safety of 2.5 is maintained on all components
 - DR 7.1 All components of the pump and pump housing shall be designed to withstand the high pressures with a structural factor of safety of 2.5 on material yield or failure.
 - DR 7.2 All components of the pump that will experience high compressive, tensile, torque or other mechanical loads will be designed to withstand those loads with a factor of safety of 2.5 on material yield or failure.
 - DR 7.3 All other components that will experience high stress or strain due to operation of the pump must be designed to withstand those high stresses and strains with a structural factor of safety of 2.5 on material yield or failure.
- FR 8 The pump shall meet 75% efficiency at maximum power/capacity

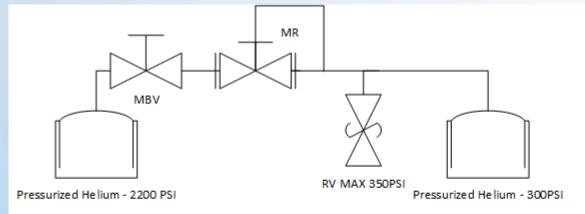



Testing

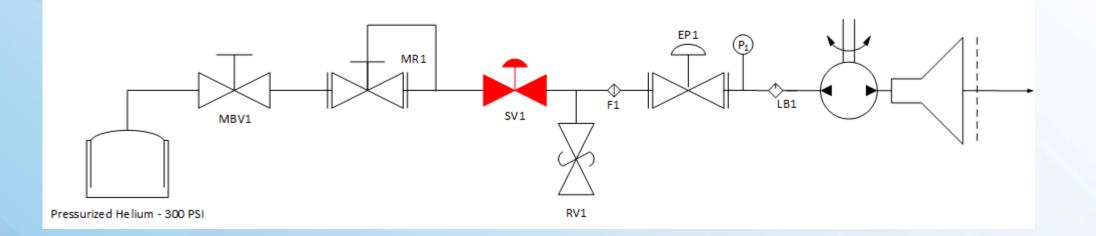


Electronic Fluid Schematic

The Design


Verification & Validation

Moving Forward



Alternate Helium Feed system

Alternate helium feed system uses a secondary tank that is filled with helium @ 300PSI. This allows for a higher flow rate regulator (MR1) to be used during testing

SAS Phase 1 – Sensor Testing and Simulation

(
Electronic pressure regulator design	 Designing motor-regulator mechanical interface Designing pressure regulation through control of motor voltage 			
Sensor Testing	 Circuit Design: Power requirements, reading outputs Calibration: sampling rate, noise compensation, error rejection 			
Simulink Modeling	 Model Drive and Pump system Design control law for throttling pump flow rate Design realistic throttle profiles 			
LabView Design	 System circuit design Implementation of safety monitoring software 			

Key Results to obtained

- Completion of pressure regulating system, obtaining resulting accuracy, slew rate, power requirements
- Pressure Transducer performance
- Tachometer mounting and performance
- First iteration of electronics circuit design
- First iteration of system control law
- Estimate of system slew rate (startup and shutdown)
- Generation of various throttle profiles
- First iteration of DAQ design for both data acquisition and system control
- First iteration of system user interface
- Design of system monitoring software
- Confirming testing location

Phase 2 Functional Reqs. met – None

Drive System Testing

- Motor: RPM/Torque Test
- Motor: Helium Run Test
- Manual Regulator: Pressure Fluctuations
- Electronic Regulator: Calibration to hit maximum accuracy.
- Tachometer: Calibration to hit maximum accuracy
- Power-Off testing: Verifying that solenoid valve correctly closes in case of power loss.
- Throttling Test 1: Throttling from 10-100% using the electronic pressure regulator, confirming control with pressure transducer.
- Throttling Test 2: Fully assembling drive system components. Running through throttle profiles.

Pump System Testing

- Manual Regulator: Pressure Fluctuations
- Power-Off testing: Verifying that solenoid valve correctly closes in case of power loss.
- Electronic Back Pressure Regulator: Calibration to hit maximum accuracy

- Numerous iterations of throttling control software, monitoring software and electronic regulator software
- Assessment of unforeseen issues, correction of affected components
- Validation of component capabilities, allowing for full system assembly to occur

Phase 3 – Full System Testing

Full scale testing to be conducted

- Drive Shaft Alignment
- Mass flow rate testing
- Throttle profile testing
- System startup and shutdown testing
- Emergency shutdown testing
- Restartability testing

- Determination of any misalignment of motor/pump driveshaft
- Pump performance: mass flow rate, back pressure, efficiency
- Observation of system under numerous throttle profiles
- Iteration on shutdown procedures to optimize restartability
- Iteration on control law to account for unaccounted system properties

Full scale testing to be conducted

- Throttle profile testing: (10 100% Throttle), slew rate testing.
- Quantifying magnitude of outlet pressure fluctuations
- Throttle profile testing (ran through various profiles)
- System startup and shutdown testing, with emergency shutdown and restart-ability

- Pump performance: mass flow rate, back pressure, efficiency
- Observation of system under numerous throttle profiles
- Iteration on shutdown procedures to optimize re-startability
- Iteration on control law to account for unaccounted system properties

SAS Standard Testing Procedure - Example

Throttle Calibration Test

- 1. Pump is started up and commanded to throttle setting
- 2. The pump is run at throttle setting
- 3. Flow enters control volume for 10 secs
- 4. Flow is diverted back to regular vent
- 5. Pump is shutdown
- 6. Control volume is measured and recorded
- 7. Test is re-iterated as needed for other throttle settings

Critical Test Elements

- Pump-Drive system
- Control Volume
- Flow Bypass system
- 3 Team membersmonitoring test

- Validation of throttle model design
- Refinement of throttle model design
- Meeting of critical project element

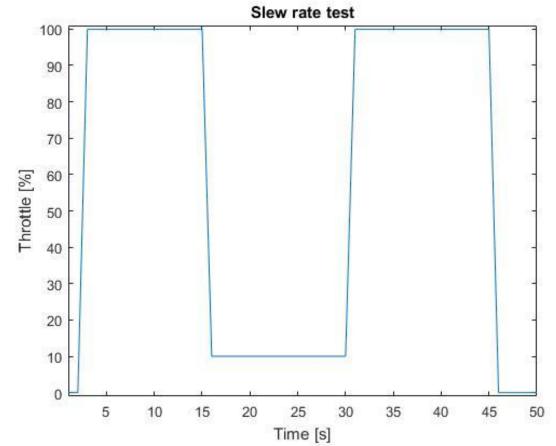
Safety Set-Up

Worst Case Failures

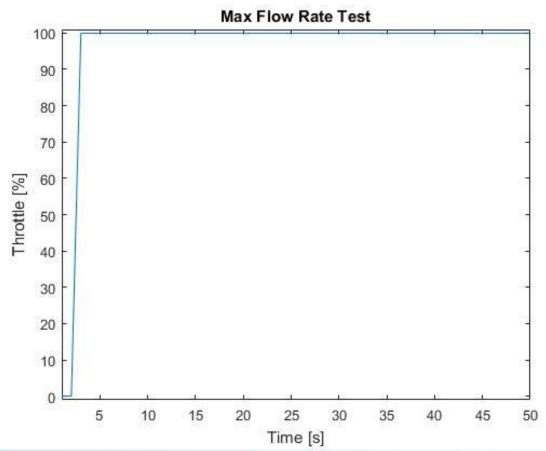
- 1. Drive system flywheel 225 J
- 2. Drive system casing -16 J
- 3. Pump gears 36 J

Cinder Block Housing Strength

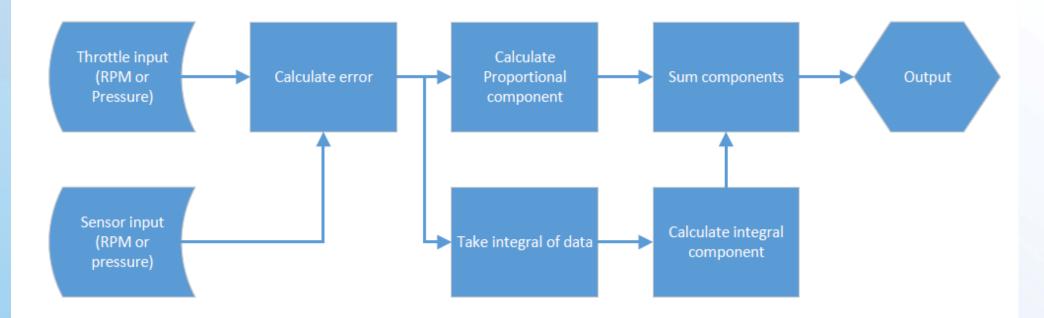
- Chipping 300 J
- Cracking 600 J
- Penetration 800 J
- Failure 1000 J
- Complete destruction >1300 J


- All piping and valving has NPT threading
- Tubing is ³/₄"with fittings
- Budgeted for necessary fittings to connect tubing and valving

- Slew rate test example
 - Off, max, min, max, off
 - Verifies
 - Control accuracy
 - Control slew
 - Pneumatic slew

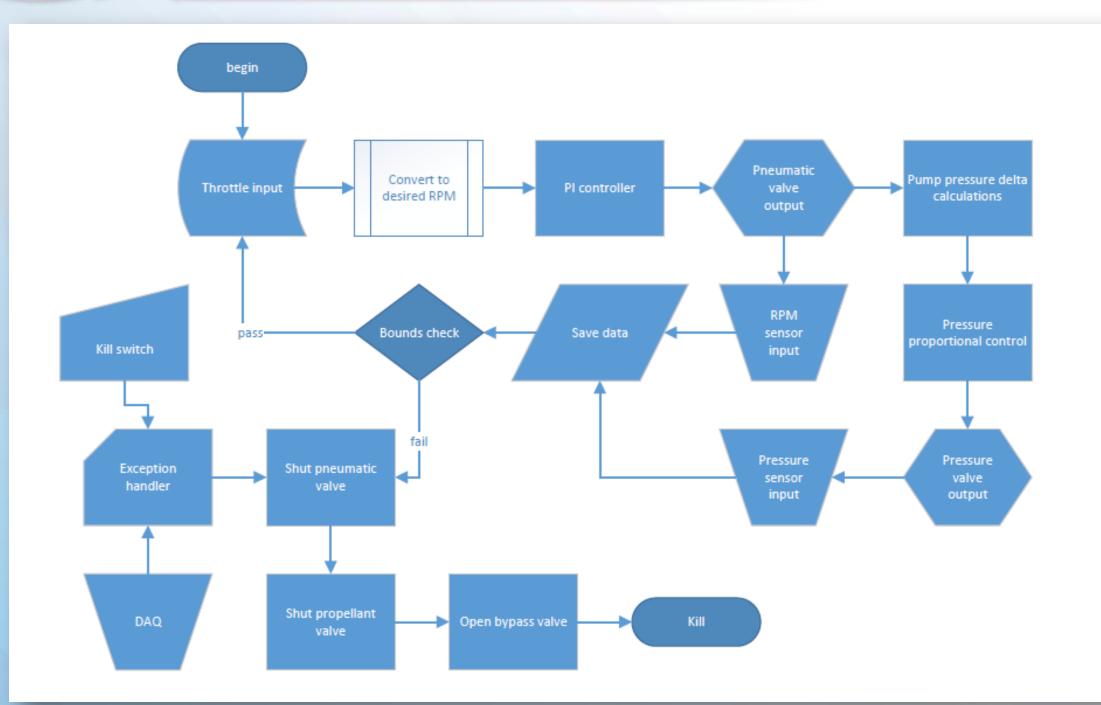


- Max flow test
 - Measure max flow rate
 - Measure max efficiency
 - Verify control stability
 - Calibrate sensors


Software

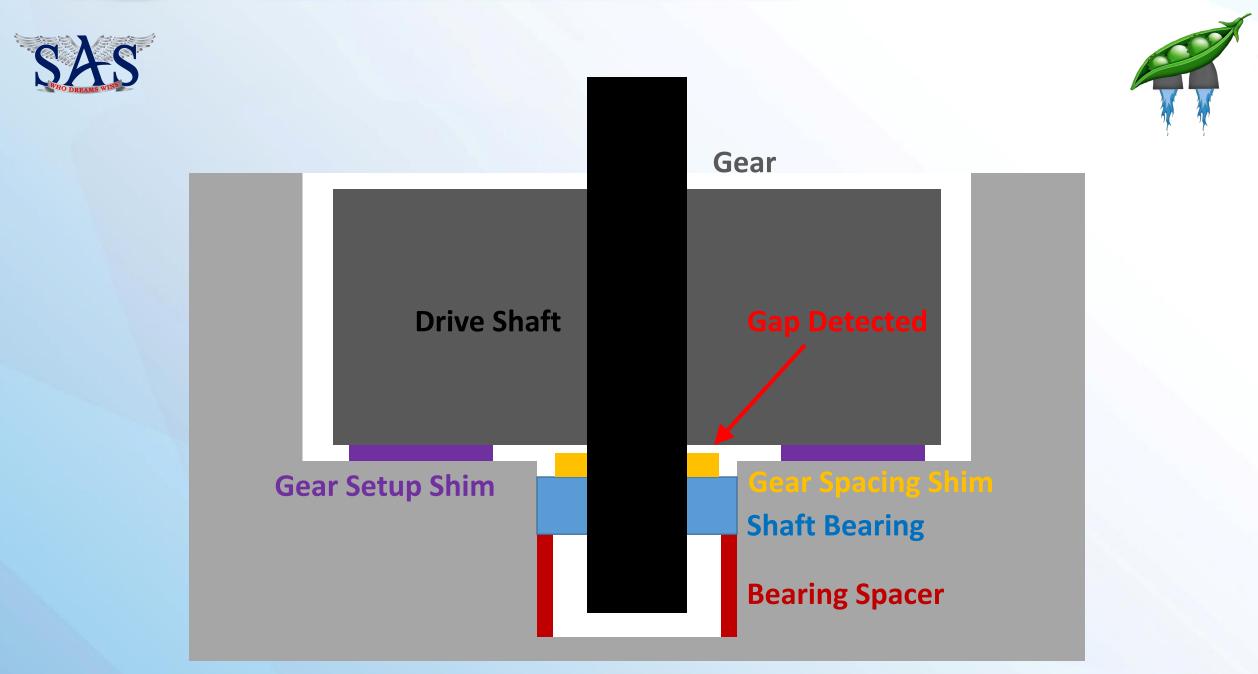
PI controller code flow

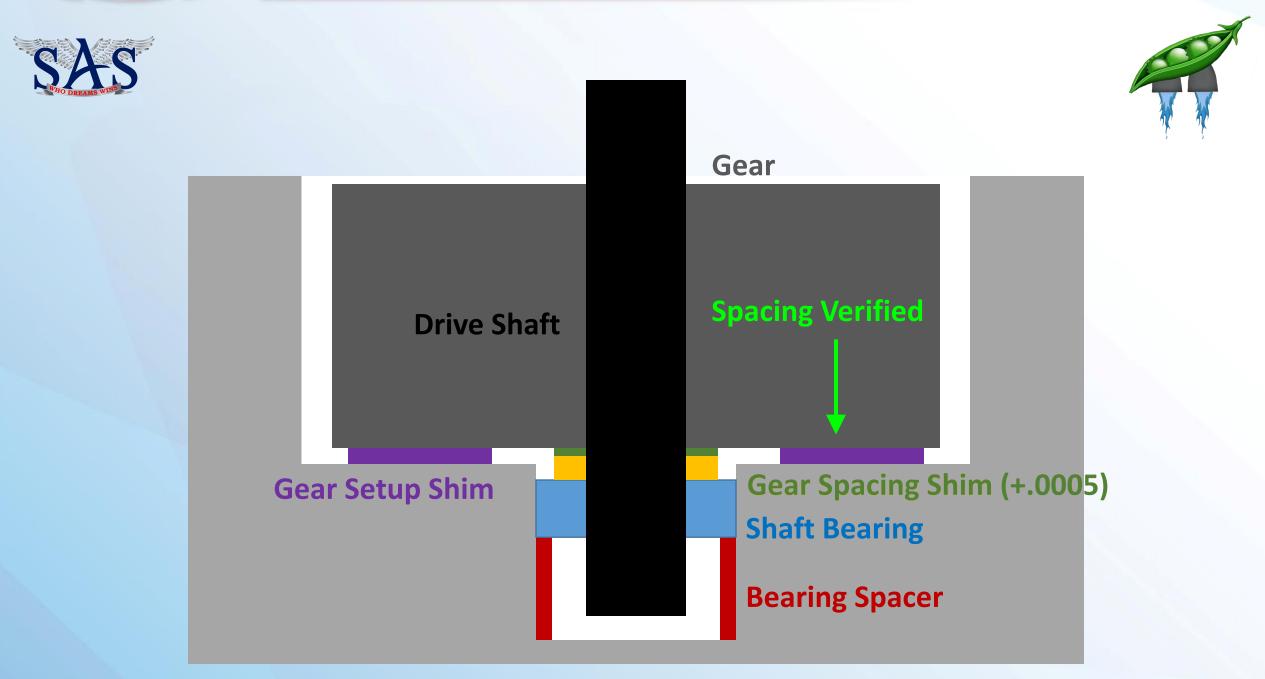
- Calculate error feedback loop component
- Calculate integral sensor data history
- Calculate P and I components
- Use data in memory

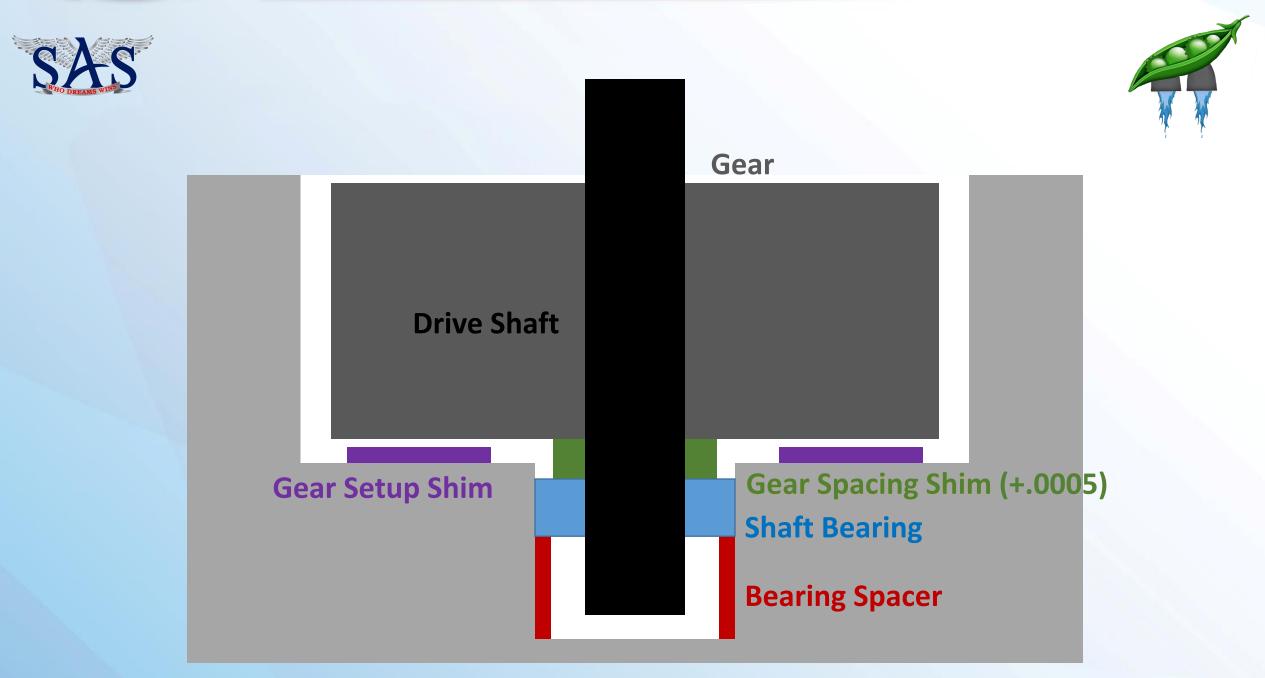


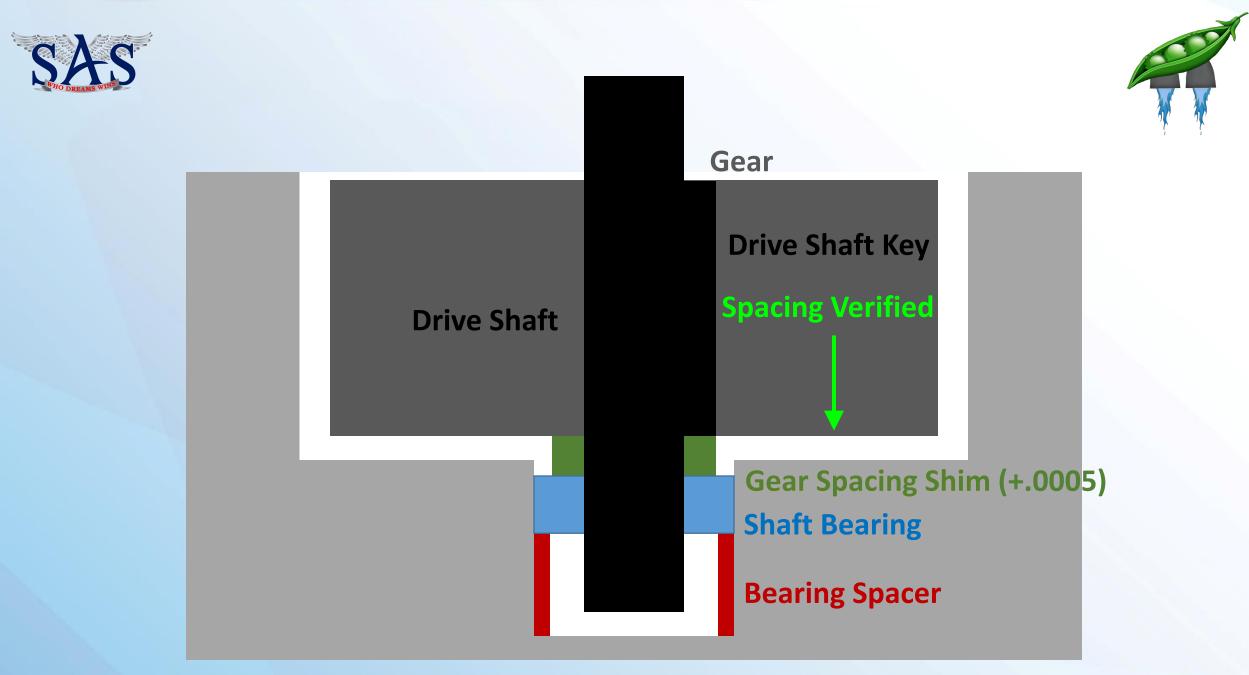
- Throttle
 - Manual and automatic input options
- Data collection
 - Write to file while running
 - Display outputs to user
- Safety
 - Bounds check on data feed
 - Exception handling
 - Kill switch
 - DAQ error signal

- Shaft Shims
- O-Ring Seal for face plate
- Shaft Seal
- Drive Shaft
- Placement Shaft
- Motor
- Coupler
- L-Brackets for Mounting
- Bearings
- Bolts

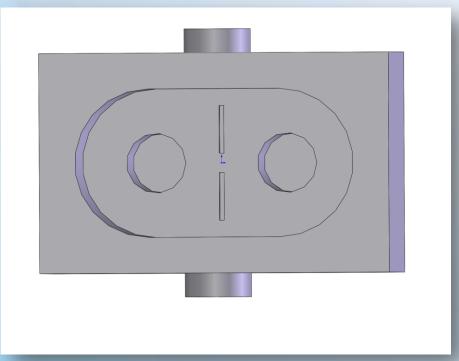


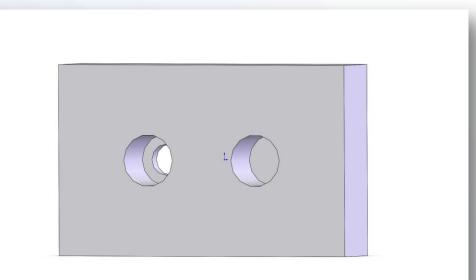

CAD Design – Gear Seating and Alignment





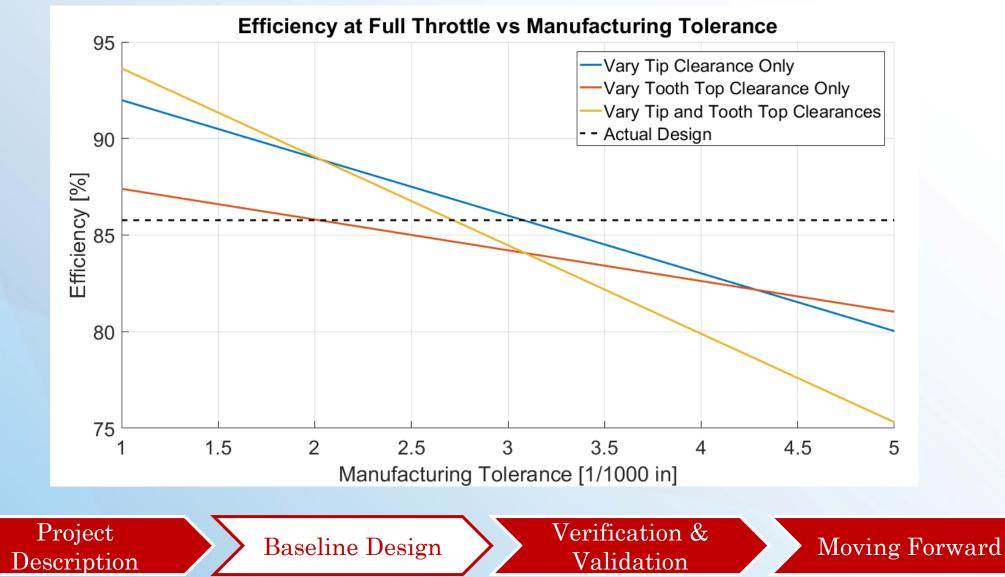
Pump Assembly

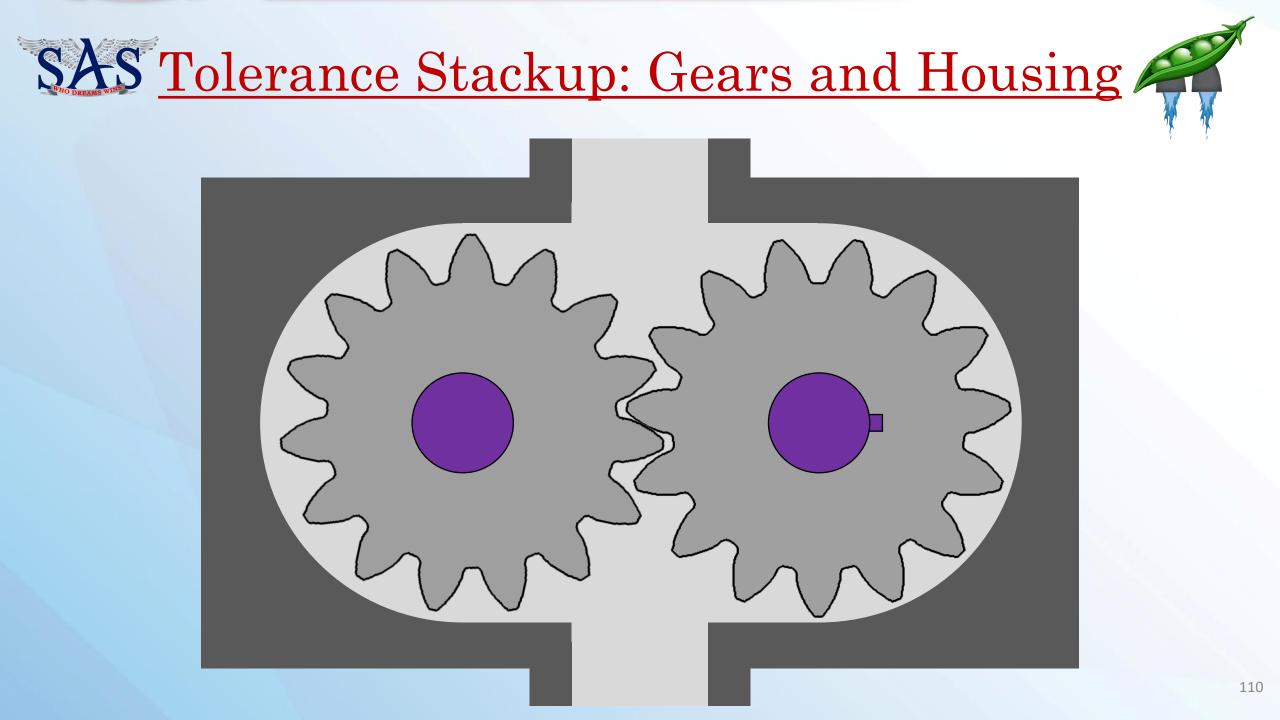




CAD Design – Housing and Panel

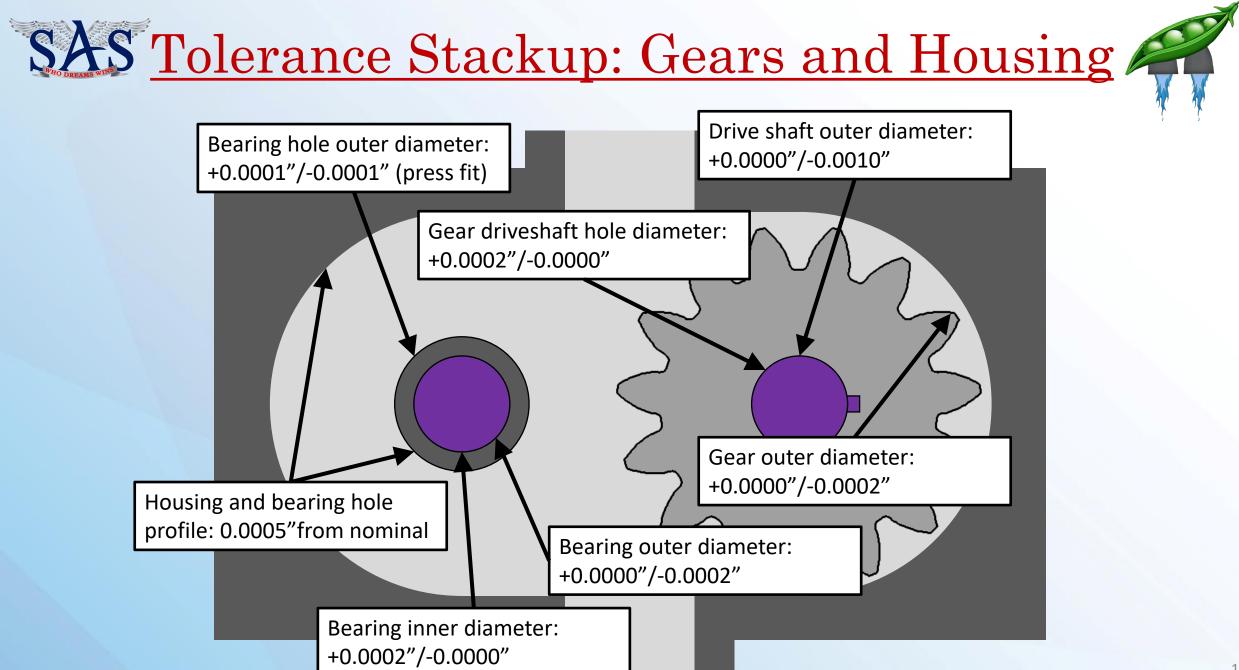
Machined either at SAS's shop or the Aerospace Machine shop on campus out of Stainless Steel 304

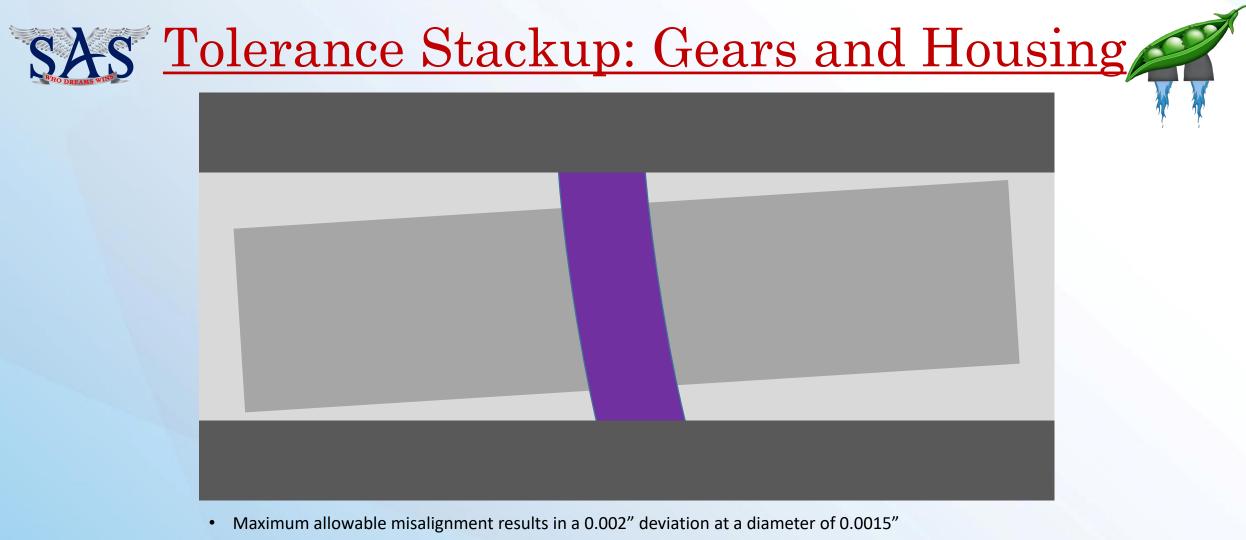




Tolerance Stackup

Tolerance Sensitivity Analysis





Tolerance Stackup: Error Sources

- Driveshaft outer diameter tolerance
 - +0.0000"/-0.0005"
- Bearing outer diameter tolerance
 - +0.0000"/-0.0002"
- Bearing inner diameter tolerance
 - +0.0002"/-0.0000"
- Bearing hole inner diameter tolerance
 - +0.0001"/-0.0001" (chamfered press fit)
- Housing/bearing hole profile tolerance
 - Profile misplaced up to 0.0005" from nominal profile
- Gear outer diameter tolerance
 - -0.0000"/-0.0002"
- Gear driveshaft hole inner diameter tolerance
 - +0.0002"/-0.0000"
- Maximum clearance deviation
 - +0.0009"/-0.0015" (linear sum)
- Maximum allowable clearance deviation
 - +0.0015"/-0.0015 (feasible!)
- Minimum clearance is 0.0006" (limited by gear/housing interference)
- Maximum clearance is 0.0030" (limited by efficiency requirements)

- Results in a maximum allowable angular misalignment of 0.11°
- Straightness tolerance is 0.0030" per ft which results in 0.00025" per in
 - Results in a maximum possible misalignment of 0.014°
- Maximum bearing hole misalignment is 0.0010"
 - Results in a maximum possible misalignment of 0.038°
- Maximum gear misalignment is 0.052°

Mechanical Analysis

Mechanical Analysis: Drive Shaft

- Driveshaft properties:
 - Material: 304 Stainless
 - Diameter: 3/4"
 - Length: 12"
- Analysis assumptions and values:
 - Uses max torque of 37.15 Nm (100% throttle NTO)
 - Shock load factor of 1.2
 - Straightness tolerance of 0.003"
 - Misalignment factor of 4.0
 - Analyzed as a circular cross section with torque loading and bending due to misalignment
 - Fatigue analysis completed assuming 100 hrs of run time
- Margins
 - Displacement: 0.7 degrees of twist (twist stores 0.4% of the amount of energy that the spinning components store)
 - Material Failure: 0.45 (Max. VM Stress: 62.4 Mpa, Yield Stress: 207 Mpa)
 - Fatigue: 0.12 (Max VM Stress: 62.4 Mpa, Max Allowable Stress: 155 Mpa (for 100 hrs run time)

Mechanical Analysis: Keyway

- Key properties:
 - Material: 303 Stainless
 - Driveshaft diameter: 3/4"
 - Keyway length: 2 in
 - Keyway width: 3/16"
 - Keyway depth: 3/32"
 - Key height: 1/4"
- Analysis assumptions and values:
 - Uses max torque of 37.15 Nm (100% throttle NTO)
 - Shock load factor of 1.2
 - Keyway analyzed in pure shear (assumes close fit of gear to drive shaft)
- Margins
 - Displacement: N/A
 - Material Failure: 0.45 (Max. VM Stress: 63.0 Mpa, Yield Stress: 207 Mpa)
 - Fatigue: 0.12 (Max VM Stress: 63.0 Mpa, Max Allowable Stress: 175 Mpa (for infinite run time)

Mechanical Analysis: Keyway

- Keyway (driveshaft) properties:
 - Material: 304 Stainless
 - Driveshaft diameter: 3/4"
 - Keyway length: 2 in
 - Keyway width: 3/16"
 - Keyway depth: 3/32"
 - Key height: 1/4"
- Analysis assumptions and values:
 - Uses max torque of 37.15 Nm (100% throttle NTO)
 - Shock load factor of 1.2
 - Key analyzed in pure shear (assumes close fit of gear to drive shaft)
- Margins
 - Displacement: N/A
 - Material Failure: 0.52 (Max. VM Stress: 56.7 Mpa, Yield Stress: 215 Mpa)
 - Fatigue: 0.12 (Max VM Stress: 56.7 Mpa, Max Allowable Stress: 175 Mpa (for infinite run time)

Mechanical Analysis: Gear Teeth

- Gear properties:
 - Material: 17-4 PH, H1150
 - Gear Pitch Diameter: 2.755"
 - Face Width: 1.500"
 - Pressure Angle: 20°
- Analysis assumptions and values:
 - Uses max torque of 37.15 Nm (100% throttle NTO)
 - Shock load factor of 1.2
 - Analyzed both contact and bending stresses on teeth
 - Fatigue analysis completed assuming 100 hrs of run time
- Margins
 - Displacement: N/A
 - Material Failure: 0.56 (Max. Contact Stress: 290 Mpa, Yield Stress: 1140 Mpa)
 - Fatigue: 0.06 (Max VM Stress: 290 Mpa, Max Allowable Stress: 762 Mpa (for 100 hrs run time)

Gear Teeth Analysis: Cont'd

- Contact stress drives margins
 - margin on contact is 0.58
 - margin on bending is 48.0
- Allowable contact stress is:

$\sigma_{allow,c} = \left(\frac{S_c}{n_s}\right) \left(\frac{Z_n C_H}{K_t K_r}\right)$

- S_c = yield strength of gear material
- $n_s = 1$
- $Z_n = \text{contact cycle factor} = 0.98 \text{ for 100 hrs run time (slide 31)}$
- $C_{\rm H}$ = Hardness ratio = 1 if both gears are the same material (ANSI/AGMA 2001- D04)
- K_t = Temperature factor = 1 for T<250F (slide 30)
- $K_r = 1$ for probability of survival of 99.99% (standard) (slide 30)

*Unless noted, all "slide##" denotations refer to the slide in presentation:

https://www3.nd.edu/~manufact/FME_pdf_files/FME3_Ch14.pdf at which the equation or value can be found

Gear Teeth Analysis: Cont'd

• Maximum contact stress is:

$$\sigma_{maximum,c} = C_p * \sqrt{W_t K_o K_v K_s K_m C_f \left(\frac{1}{D F I}\right)}$$

- D = pitch diameter
- F = face width
- ω = angular velocity of gears
- Phi = pressure angle of gears
- E = modulus of elasticity of gear material
- v = poisson's ratio of gear material
- $V_t = \omega^* D/2$ (slide 42)
- T_{max} = maximum gear torque = maximum driveshaft torque divided by 2
- $C_p = sqrt(E/(2*pi*(1-v^2))) = elastic coefficient$
- W_t = T/(D/2) = tangential load
- $K_0 = 1.2 = overload factor (slide 37)$

*Unless noted, all "slide##" denotations refer to the slide in presentation:

<u>https://www3.nd.edu/~manufact/FME_pdf_files/FME3_Ch14.pdf</u> at which the equation or value can be found

Gear Teeth Analysis: Cont'd

- $K_v = ((A+(C*sqrt(v_t))/A)^B = dynamic factor (A,B,C values from source below) (slide 42)$
 - A = 50 + (56*(1-B))
 - $B = 0.25(12 \cdot Q_v) \land 0.667$ - $Q_v = 10$ (quality rating)
 - C = 14.14 (from source below)
- $K_s = 1 = size factor (slide 37)$

$$- K_{m} = 1 + (C_{mc} * ((C_{pf} * C_{pm}) + (C_{ma} * C_{e}))) \text{ (slide 38)}$$

- $C_{mc} = 1$
- $C_{pf} = 0$
- $C_{pm} = 1$ (no drive shaft flexure)
- $C_{ma} = A+(B*F)+(C*F^2)$ (A,B, C from slide 40 of source below)
 - A = 0.127
 - B = 6.22E-4 - C = -1.69E-7
- $C_e = 1$
- $C_f = pitting resistance factor (slide 31)$
- I = ((sin(phi)*cos(phi))/4) = geometry pitting resistance factor (ANSI/AGMA 2001- D04)

^{*}Unless noted, all "slide##" denotations refer to the slide in presentation:

https://www3.nd.edu/~manufact/FME pdf files/FME3 Ch14.pdf at which the equation or value can be found

SAS <u>Mechanical Analysis: Housing End</u> Plates

- Endplate properties:
 - Material: 304 Stainless
 - Minimum thickness: 5/8"
 - Maximum allowable displacement: 0.0001"
- Analysis assumptions and values:
 - Uses max pressure of 750 psi across full surface of endplate
 - Pressure spike factor of 1.2
 - Analyzed as rectangular area that circumscribes the oval shaped area it will cover (conservative)
 - Analyzed as a plate with fixed edges (valid because no separation on endplate bolts)
- Margins
 - Displacement: 0.00005"
 - Material Failure: 0.43 (Max. Bending Stress: 60.0 Mpa, Yield Stress: 215 Mpa)
 - Fatigue: N/A

SASS-

Mechanical Analysis: Housing Walls

- Housing wall properties:
 - Material: 304 Stainless
 - Minimum thickness: 1/2"
 - Maximum allowable displacement: 0.0001"
- Analysis assumptions and values:
 - Uses max pressure of 750 psi inside of gear cavity
 - Pressure spike factor of 1.2
 - Analyzed using hoop stress and strain equations
- Margins
 - Displacement: 0.00004" (driving margin)
 - Material Failure: 4.03 (Max. Hoop Stress: 17.1 Mpa, Yield Stress: 215 Mpa)
 - Fatigue: N/A

SAS

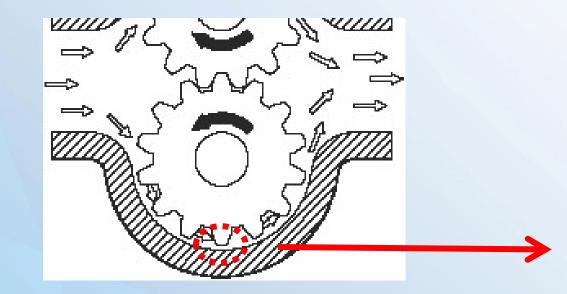
Mechanical Analysis: Housing Walls

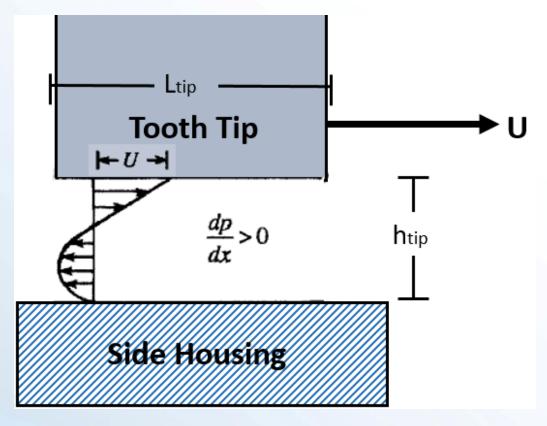
- Housing bolts properties:
 - Grade 8 bolts, 1/2"-13x2"
 - Minimum thread engagment: 1-1/2"
 - Tap material is 304 Stainless
 - Bolt torque: 42+/-2 ft-lbs
- Analysis assumptions and values:
 - Uses max pressure of 750 psi inside of gear cavity
 - Pressure spike factor of 1.2
 - Analyzed tensile failure of bolt, shear of threads and shear of tap
- Margins
 - Displacement: 6.02 (margin on bolt separation)
 - Material Failure: 0.04 (Max tap VM stress: 82.3 Mpa, Max. allowable stress: 215 Mpa)
 - Fatigue: N/A

Motor Mount Bolts: Housing Walls

- Housing bolts properties:
 - Grade 10.9 bolts, M8-1.25x14
 - Minimum thread engagment: 12 mm
 - Tap material is Cast Iron (ASTM 20, conservative)
 - Bolt torque: 45+/-2 in-lbs
- Analysis assumptions and values:
 - Uses max torque of 37.15 Nm (100% throttle NTO)
 - Shock load factor of 1.2
 - Analyzed tensile failure of bolt, shear of threads and shear of tap
- Margins
 - Displacement: 2.47 (margin on bolt separation)
 - Material Failure: 0.02 (Max tap VM stress: 59.7 Mpa, Max. allowable stress: 152 Mpa)
 - Fatigue: N/A

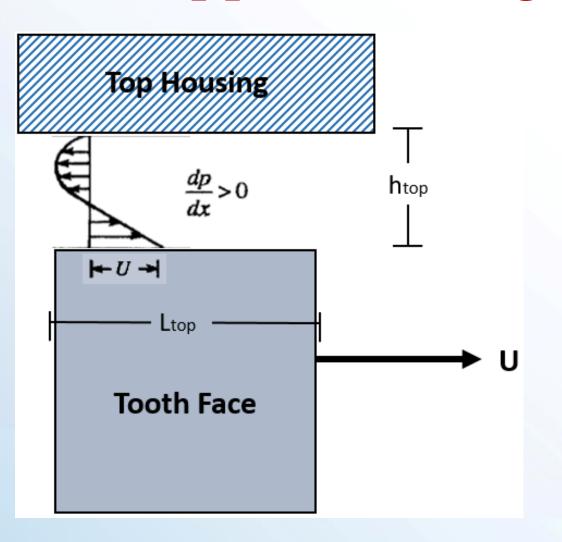
Motor Mount Bolts: Housing Walls


- Housing bolts properties:
 - Grade 10.9 bolts, M8-1.25x14
 - Minimum thread engagment: 12 mm
 - Tap material is Cast Iron (ASTM 20, conservative)
 - Bolt torque: 45+/-2 in-lbs
- Analysis assumptions and values:
 - Uses max torque of 37.15 Nm (100% throttle NTO)
 - Shock load factor of 1.2
 - Analyzed tensile failure of bolt, shear of threads and shear of tap
- Margins
 - Displacement: 2.47 (margin on bolt separation)
 - Material Failure: 0.02 (Max tap VM stress: 59.7 Mpa, Max. allowable stress: 152 Mpa)
 - Fatigue: N/A



Fluid Model

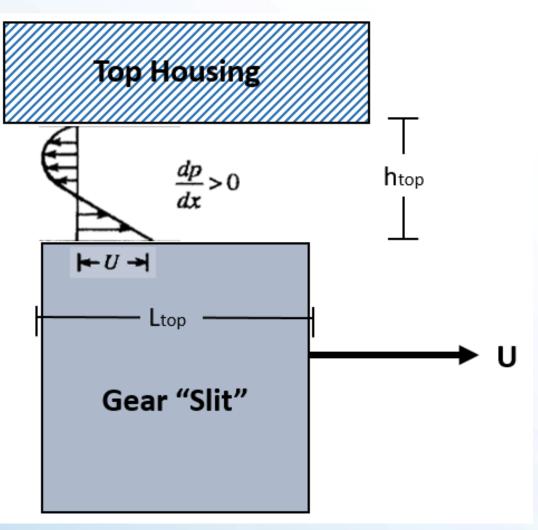
Slip-back path 1: Between teeth tips and outer housing



$$\dot{m}_{slip_1} = \frac{\rho h_{tip}^3 w \Delta P_1}{12 \mu L_{tip}}$$

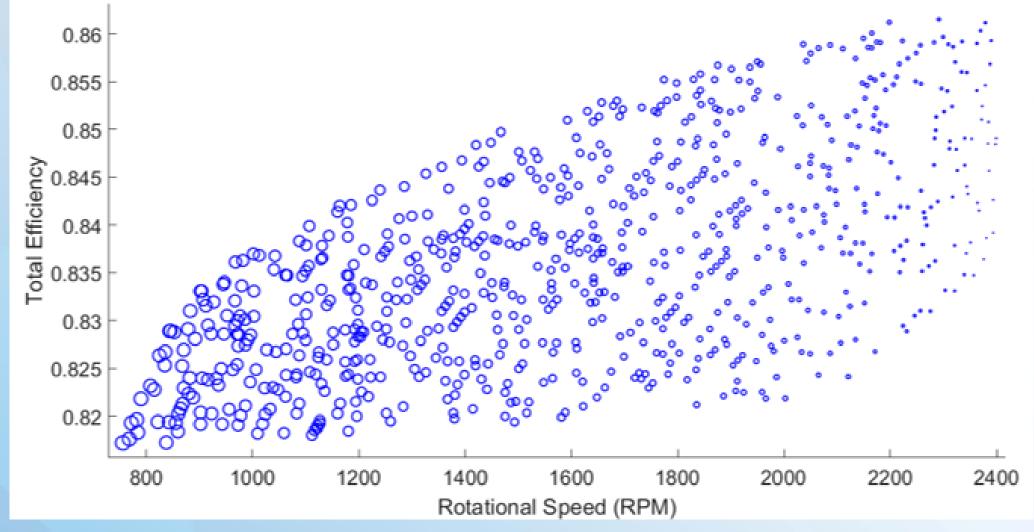
Slip-back path 2: Between teeth tops and upper housing

$$\dot{m}_{slip_2} = \frac{3\rho h_{top}^3 D}{16 n \mu} \frac{\Delta P_2}{L_{top}}$$



Flow not in x direction "cancels"

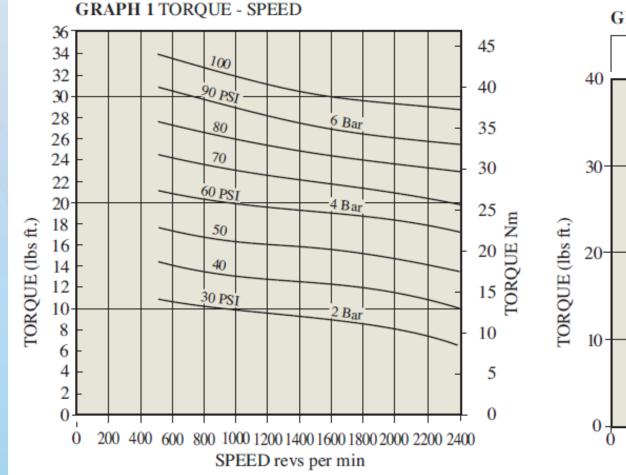
 $=\frac{\pi\rho h_{top}^{3}\Delta P_{3}}{32\mu}$ m_{slip3}



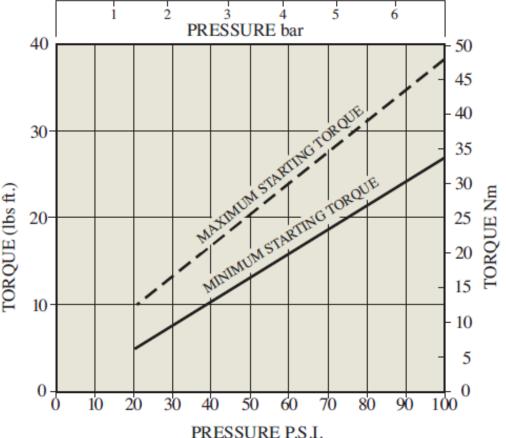
Thermal Model

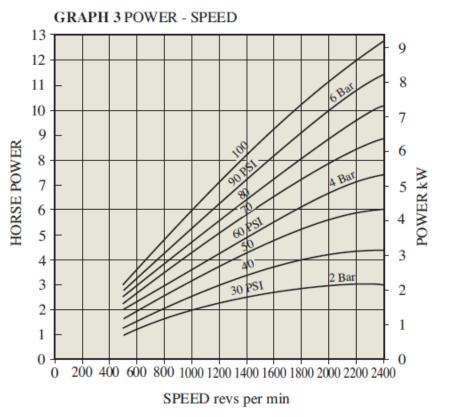
Forced Convection

$$\dot{Q}_{\rm conv} = hA_s(T_s - T_\infty)$$
 (W)


where

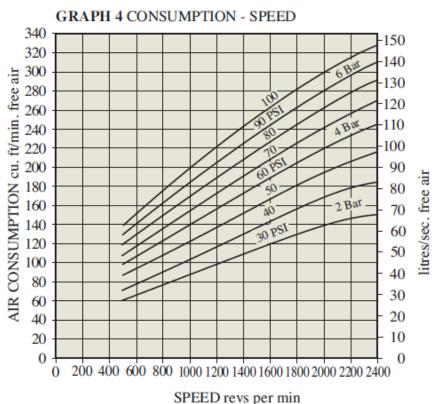
- $h = \text{convection heat transfer coefficient, W/m^2 · °C}$
- A_s = heat transfer surface area, m²
- T_s = temperature of the surface, °C
- T_{∞} = temperature of the fluid sufficiently far from the surface, °C


- Tooth tip temperature rises by only 2 deg C
- dL ~= 1.17e-5
- clearance = 3e-3



GRAPH 2 STARTING TORQUE - PRESSURE

Attitude:


The motor can be operated in all positions.

Airline filtration and lubrication:

Use 64 micron filtration or better. Choose a lubricator suitable for the flow required. Prior to start up, inject oil into the inlet port.

Lubricator drop rate:

8-10 drops per minute continuous operation. 14-16 drops per minute intermittent operation.

Polar Moment of Inertia: 30 lb.in2 (8.8 g.m2).

Maximum overhung force on shaft:

400 lbf (1750N) In certain circumstances this may be extended. Consult your Globe Distributor. Axial loads should be kept down to a minimum.

Maximum temperatures:

-40° to $+176^{\circ}$ Farenheit. (-20° to $+80^{\circ}$ C)

Simulation Assumptions

- Back pressure is treated as being what it ideally should be given mass flow rate
 - Simulation can account for non-ideal artificial back pressures, in the case of testing the back pressure will likely not be what it ideally should be
- Transient flow effects not considered
- Kinetic energy change not considered due to large piping which makes these effects negligible
- No control law implemented, exact knowledge of states used to command throttle values
 - Slow pressure regulator slew rate implemented (1 sec) to ensure system can work with artificial slew rate limitations. Implemented due to the idealized control giving excessively fast control.

Budget

Part	▼	Unit (Part Numt 🔻	Price	•	Quantity 🔍 💌	Subtotal 🔍 🔻	Shipping 🔍 🔻	Discount 🔍	Total 💌		Reference
Wire			\$	-	20	\$-	0	0%	\$ -		Trudy's Shop. Ask before using
Microcontroller			\$	-	1	\$-	0	0%	\$-		University Provided
Gear Block		1319T4	\$	89.02	4	\$ 356.08	\$ 13.35	0%	\$ 369.43		https://www.mcmaster.com/#catalog/122/3792/=150xvbq
Panel		1319T4	\$	89.02	1	\$ 89.02	\$ 13.35	0%	\$ 102.37		https://www.mcmaster.com/#catalog/122/3792/=150xvbq
Housing		8983K198	\$	57.41	1	\$ 57.41	\$ 8.61	0%	\$ 66.02		http://www.mcmaster.com/#standard-stainless-steel-sheets/=14gwanw
Nuts and Bolts		As Needed	\$	35.00	1	\$ 35.00	0	0%	\$ 35.00		http://www.homedepot.com/p/Prime-Line-1-4-20-Carriage-Bolts-with-Nuts-GD-52103/202633663
EDMing			\$	750.00	1	\$ 750.00	0	0%	\$ 750.00		
Machining Metals		As Needed	\$	-	0	\$-	0	0%	\$-		SAS Will Machine for us to specified tolerances. Given advanced notice
Pressure Transducers		PX309-5KG5V	\$	-	4	\$-	0	0%	\$-		SAS Provided. http://www.omega.com/pptst/PX309-5V.html
Pressure Transducers		YX-98071-23	\$	312.00	1	\$ 312.00	\$ 46.80	0%	\$ 358.80		http://www.davis.com/Product/GE_Druck_PTX5072_Pressure_Transmitter_1000_psi_Sealed_4_20m
Pressure Regulator		21U842	\$	221.25	1	\$ 221.25	\$ 33.19	0%	\$ 254.44		https://www.grainger.com/product/PARKER-300-psi-Aluminum-Nonrising-21U842
Pressure Regulator 2		VIC0781-0528	\$	280.00	1	\$ 280.00	\$ 42.00	0%	\$ 322.00		http://www.airgas.com/product/Gas-Equipment/Gas-Equipment-Accessories/Industrial-Gas-Regulate
Line Hookups		3/8" Lines	\$	-	2	\$-	0	0%	\$-		SAS Provided. http://www.mcmaster.com/#quick-disconnect-hose-couplings/=14gt96o
Drive System		VA10 J	\$	1,095.00	1	\$ 1,095.00	\$ 164.25	0%	\$ 1,259.25		globe
Drive System Filter		3248T11	\$	78.10	1	\$ 78.10	\$ 11.72	0%	\$ 89.82		https://www.mcmaster.com/#catalog/122/1008/=150y0vn
Drive System Lube		8520T19	\$	82.59	1	\$ 82.59	\$ 12.39	0%	\$ 94.98		https://www.mcmaster.com/#catalog/122/1022/=150y14e
Drive System Oil		1298K72	\$	24.59	1	\$ 24.59	\$ 3.69	0%	\$ 28.28		https://www.mcmaster.com/#catalog/122/2195/=150y1on
Regulator			\$	-	1	\$-	0	0%	\$-		SAS Provided
Teflon Seal		5154T31	\$	103.76	1	\$ 103.76	\$ 15.56	0%	\$ 119.32		https://www.zoro.com/dayton-shaft-seal-58-in-ptfe-carbon-ceramic-3acf6/i/G0758633/?gclid=CPmp
Ball Bearings		6909UU	\$	19.49	1	\$ 19.49	\$ 2.92	0%	\$ 22.41		http://www.mcmaster.com/#ring-seals/=14iup14
Water Drum		56W55R	\$	41.33	1	\$ 41.33	\$ 6.20	0%	\$ 47.53		http://www.thecarycompany.com/55-gallon-tight-head-plastic-drum-56w55r?utm_source=google_s
Krytox 240 Lubricant		240AD-20Z	\$	230.38	1	\$ 230.38	\$ 34.56	0%	\$ 264.94		http://www.skygeek.com/dupont-lubricants-grease-240ad-2-oz-tube-240ad2oz.html?utm_source=gc
Tooling for gears			\$	500.00	1		0	0%	\$ 500.00		
Solenoid Valve		SV170	\$	367.00	1	\$ 367.00	\$ 55.05	0%	\$ 422.05		http://www.omega.com/pptst/SV170_SERIES.html
Tachometer		RL50-850	\$	469.00	1	\$ 469.00	\$ 70.35	0%	\$ 539.35		http://www.abgindustrial.net/store/a2108-handheld-tachometer-with-analog-output-p-513.html?gc
Binding Reports		NA		100.00	2		0	0%	\$ 200.00		
Microsoft Office		NA		-	1	\$ -	0	0%	\$ -		University Provided
NI LabView		NA		-	1	\$ -	0	0%	\$ -		University Provided
Matlab/Simulink		NA	\$	-	1	\$ -	0	0%	\$ -		University Provided
Solidworks 2016		NA	\$	-	1	\$-	0	0%	\$-		University Provided
Gantter		NA	\$	-	1	\$ -	0	0%	\$ -		University Provided
Shaft Coupler		6507K64	\$	25.15	2	\$ 50.30	\$ 3.77	0%	\$ 54.07		https://www.mcmaster.com/#catalog/122/1232/=150y3jp
Shaft Hub	_	6507K73	\$	23.19	1	\$ 23.19	\$ 3.48	0%	\$ 26.67		https://www.mcmaster.com/#catalog/122/1232/=150y40g
DC Motor		PK256-02A	\$	78.00	2	\$ 156.00	\$ 11.70	0%	\$ 167.70		http://catalog.orientalmotor.com/plp/itemdetail.aspx?cid=1002&categoryname=stepping-moto
Helium Piping	_	62145552	\$	17.09	1	\$ 17.09	\$ 2.56	0%	\$ 19.65		http://www.mscdirect.com/product/details/62145552?mkwid=txg6YEZy&cid=PLA-Google-PLA++Tes
Downstream Helium		438288	\$	16.52	1	\$ 16.52	0	0%	\$ 16.52		http://www.homedepot.com/p/Mueller-Streamline-1-in-x-48-in-Steel-Sch-40-Black-Pipe-585-480HC/
Pressure Regulator		214716		73.97	1		0	0%	\$ 73.97		https://www.lowes.com/pd/Wilkins-1-in-Bronze-Female-In-Line-Pressure-Reducing-Valve/3132425
Tee's		181943		4.83	5		0	0%	\$ 24.15		http://www.homedepot.com/p/Mueller-Global-1-in-Galvanized-Malleable-Iron-Tee-510-605HN/100
Helium Relief Valve		15x915		50.50	1		\$ 7.58	0%	\$ 58.08		https://www.grainger.com/product/CONRADER-Brass-Air-Safety-Valve-with-15X915?s_pp=false&pic
Water Relief Valve		RL50-850		69.00	1		-	0%	-		https://www.shopcross.com/product/brand-hydraulics-rI50-850-adjustable-relief-valve-12-npt0-20-g
Piezzo Transducer		113B24		590.00	1			0%			http://www.pcb.com/Products.aspx?m=113B24
Piping		301337		20.28	1		0				http://www.homedepot.com/p/1-in-x-10-ft-Galvanized-Steel-Pipe-565-1200HC/100576427
					_		_				
Legend								Subtotal	\$ 7,064.93		
Hardware								Тах	()	
Manufacturing								Total	\$ 7,064.93		
Other/Software								Margin	\$ 935.07		
Testing/electronics								Total w/ Margin			
i counter on tes									- 0,000.00	4	

Part	-	Unit (Part Numb 🔻	Pric	e 🔻	Quantity 📃	- 9	Subtotal	- 5	Shipping 🛛 🔻	Discount 💌	Т	otal 🔻	Reference
Wire			\$	-	20)	\$-		0	0%	\$	5 -	Trudy's Shop. Ask before using
Microcontroller			\$	-		1	\$-		0	0%	\$	5 -	University Provided
Gear Block		1319T4	\$	89.02		4	\$ 356.08	3	\$ 13.35	0%	\$	369.43	https://www.mcmaster.com/#catalog/122/3792/=
Panel		1319T4	\$	89.02		L	\$ 89.02	2	\$ 13.35	0%	\$	102.37	https://www.mcmaster.com/#catalog/122/3792/=
Housing		8983K198	\$	57.41		1	\$ 57.41	1	\$ 8.61	0%	\$	66.02	http://www.mcmaster.com/#standard-stainless-st
Nuts and Bolts		As Needed	\$	35.00		1	\$ 35.00	כ	0	0%	\$	35.00	http://www.homedepot.com/p/Prime-Line-1-4-20
EDMing			\$	750.00		1	\$ 750.00)	0	0%	\$	750.00	
Machining Metals		As Needed	\$	-		כ	\$-		0	0%	\$	5 -	SAS Will Machine for us to specified tolerances. Giv
Pressure Transducers	5	PX309-5KG5V	\$	-		4	\$-		0	0%	\$	5 -	SAS Provided. http://www.omega.com/pptst/PX30
Pressure Transducers	5	YX-98071-23	\$	312.00		1	\$ 312.00)	\$ 46.80	0%	\$	358.80	http://www.davis.com/Product/GE_Druck_PTX507
Pressure Regulator		21U842	\$	221.25		1	\$ 221.25	5	\$ 33.19	0%	\$	254.44	https://www.grainger.com/product/PARKER-300-p
Pressure Regulator 2		VIC0781-0528	\$	280.00		L	\$ 280.00)	\$ 42.00	0%	\$	322.00	http://www.airgas.com/product/Gas-Equipment/G
Line Hookups		3/8" Lines	\$	-		2	\$-		0	0%	\$	5 -	SAS Provided. http://www.mcmaster.com/#quick-
Drive System		VA10 J	\$	1,095.00		L	\$ 1,095.00)	\$ 164.25	0%	\$	\$ 1,259.25	globe
Drive System Filter		3248 T11	\$	78.10		L	\$ 78.10)	\$ 11.72	0%	\$	89.82	https://www.mcmaster.com/#catalog/122/1008/=
Drive System Lube		8520T19	\$	82.59		L	\$ 82.59	Э	\$ 12.39	0%	\$	94.98	https://www.mcmaster.com/#catalog/122/1022/=
Drive System Oil		1298K72	\$	24.59	-	L	\$ 24.59	Э	\$ 3.69	0%	\$	28.28	https://www.mcmaster.com/#catalog/122/2195/=
Regulator			\$	-		1	\$-		0	0%	\$	5 -	SAS Provided
Teflon Seal		5154T31	\$	103.76		1	\$ 103.76	5	\$ 15.56	0%	\$	119.32	https://www.zoro.com/dayton-shaft-seal-58-in-ptf
Ball Bearings		6909UU	\$	19.49		1	\$ 19.49	9	\$ 2.92	0%	\$	5 22.41	http://www.mcmaster.com/#ring-seals/=14iup14
Water Drum		56W55R	\$	41.33		1	\$ 41.33	3	\$ 6.20	0%	\$	47.53	http://www.thecarycompany.com/55-gallon-tight-
Krytox 240 Lubricant		240AD-20Z	\$	230.38		1	\$ 230.38	3	\$ 34.56	0%	\$	264.94	http://www.skygeek.com/dupont-lubricants-greas
Tooling for gears			\$	500.00		1	\$ 500.00)	0	0%	\$	500.00	

Solenoid Valve	SV170	\$ 367.00	1 \$	367.00	\$ 55.05	0%	\$ 42	22.05	http://www.omega.com/pptst/SV170_SERIES.html
Tachometer	RL50-850	\$ 469.00	1 \$	469.00	\$ 70.35	0%	\$ 53	39.35	http://www.abqindustrial.net/store/a2108-handheld-tachometer-wit
Binding Reports	NA	\$ 100.00	2 \$	200.00	0	0%	\$ 20	00.00	
Microsoft Office	NA	\$-	1 \$	-	0	0%	\$	-	University Provided
NI LabView	NA	\$-	1 \$	-	0	0%	\$	-	University Provided
Matlab/Simulink	NA	\$-	1 \$	-	0	0%	\$	-	University Provided
Solidworks 2016	NA	\$-	1 \$	-	0	0%	\$	-	University Provided
Gantter	NA	\$-	1 \$	-	0	0%	\$	-	University Provided
Shaft Coupler	6507K64	\$ 25.15	2 \$	50.30	\$ 3.77	0%	\$ 5	54.07	https://www.mcmaster.com/#catalog/122/1232/=150y3jp
Shaft Hub	6507K73	\$ 23.19	1 \$	23.19	\$ 3.48	0%	\$2	26.67	https://www.mcmaster.com/#catalog/122/1232/=150y40g
DC Motor	PK256-02A	\$ 78.00	2 \$	156.00	\$ 11.70	0%	\$ 16	67.70	http://catalog.orientalmotor.com/plp/itemdetail.aspx?cid=1002&c
Helium Piping	62145552	\$ 17.09	1 \$	17.09	\$ 2.56	0%	\$1	19.65	http://www.mscdirect.com/product/details/62145552?mkwid=txg6Y
Downstream Helium	438288	\$ 16.52	1 \$	16.52	0	0%	\$1	16.52	http://www.homedepot.com/p/Mueller-Streamline-1-in-x-48-in-Stee
Pressure Regulator	214716	\$ 73.97	1 \$	73.97	0	0%	\$7	73.97	https://www.lowes.com/pd/Wilkins-1-in-Bronze-Female-In-Line-Pres
Tee's	181943	\$ 4.83	5 \$	24.15	0	0%	\$2	24.15	http://www.homedepot.com/p/Mueller-Global-1-in-Galvanized-Mall
Helium Relief Valve	15x915	\$ 50.50	1 \$	50.50	\$ 7.58	0%	\$ 5	58.08	https://www.grainger.com/product/CONRADER-Brass-Air-Safety-Valv
Water Relief Valve	RL50-850	\$ 69.00	1 \$	69.00	\$ 10.35	0%	\$7	79.35	https://www.shopcross.com/product/brand-hydraulics-rl50-850-adju
Piezzo Transducer	113B24	\$ 590.00	1 \$	590.00	\$ 88.50	0%	\$67	78.50	http://www.pcb.com/Products.aspx?m=113B24
Piping	301337	\$ 20.28	1 \$	20.28	0	0%	\$2	20.28	http://www.homedepot.com/p/1-in-x-10-ft-Galvanized-Steel-Pipe-56

Likelihood		Severity - Technical		Severity - Cost	
1	Not likely	1	Minimal or no impact	1	Minimal or no impact
2	Low likelihood	2	Minor performance shortfall, same approach retained	2	<1% of budget to replace
3	Likely	3	Moderate performance shortfall, but work arounds available	3	<5% of budget to replace
4	Highly Likely	4	Unacceptable, but work arounds available	4	<10% of budget to replace
5	Near certainty	5	Unacceptable; no alternatives exist	5	>10% of budget to replace
Severity - Safety		Severity - Schedule			
1	Minimal or no impact	1	Minimal or no impact		
2	Could result in: injury or occupational illness not resulting in a lost work day	2	Additional activities required but able to meet key deadlines (few hrs - 1d)		
3	Could result in: injury or occupational illness resulting in one or more lost work day(s)	3	Minor schedule slip; will miss internal deadline (1d - 3d)		
4	Could result in: permanent partial disability,injuries or occupational illness	4	Critical path affected (+3d)		
5	Could result in: death or permanent total disability	5	Cannot achieve milestone		

Risk Matrices: Highest

Highest Risk							· · · · ·
Additive Risk Matrix		Severity					
		,	1	2	3	4	5
		Cost	Minimal or no impact	<1% of budget to replace	<5% of budget to replace	<10% of budget to replace	>10% of budget to replace
		Schedule	Minimal or no impact	Additional activities required but able to meet key deadlines (few hrs - 1d)	Minor schedule slip; will miss internal deadline (1d - 3d)	Critical path affected (+3d)	Cannot achieve milestone
		Technical	Minimal or no impact	Minor performance shortfall, same approach retained	Moderate performance shortfall, but work arounds available	Unacceptable, but work arounds available	Unacceptable; no alternatives exist
		Safety	Minimal or no impact	Could result in: injury or occupational illness not resulting in a lost work day	Could result in: injury or occupational illness resulting in one or more lost work day(s)	Could result in: permanent partial disability,injuries or occupational illness	Could result in: death or permanent total disability
Likelihood			1	2	3	4	5
5	Near certainty >95%	5		31			
4	Highly Likely >65%	4			30,37,38		
3	Likely >35%	3				2,4,5,9	3,22,47,53
2	Low likelihood <35%	2					20,21,35,36,45,46,52
1	Not likely <10%	1					

Risk Highest Severity

Risk (highest severity)	L	Highest S	L*S
Loss of Power to Computer	1	2	2
He Manual Ball Valve Failure	1	3	3
Housing breaking	1	4	4
Gears breaking	1	4	4
Thermal Material Failure	1	4	4
Inadequate H2O mass flow rate	1	4	4
Pressure Gauge Failure	1	4	4
Assembly Schedule	2	2	4
Computer Crashes	2	2	4
Labview Crashes	2	2	4
High pressure helium failure	1	5	5
K bottle regulator failure	1	5	5
Microcontroller failure	2	3	6
Incorrect Calibration of Pressure Transducers	2	3	6
Incorrect Calibration of Tachometer	2	3	6
Pressure Sensor 1 Failure	2	3	6
H2O Manual Pressure Regulator Failure	2	3	6
H2O Solenoid Valve Fail Open	2	3	6
He Manual Pressure Regulator Failure	2	3	6
H20 Delivery Sys Failure	2	3	6
Noise in sensors	3	2	6
Valve freezing	3	2	6
Outlet Pressure Harm	2	4	8
Not hitting tolerances on gears	2	4	8
Not hitting tolerance on housing	2	4	8
Incorrect Pressure Data Acquisition	2	4	8
Incorrect Tachometer Data Acquisition	2	4	8
Cavitation	2	4	8
Bearing failure	2	4	8

Improper lubrication	2	4	8
Pressure buildup between teeth	2	4	8
Tube Failures	2	4	8
H2O Solenoid Valve Failure	2	4	8
He Solenoid Valve Fail Open	2	4	8
He Solenoid Valve Failure	2	4	8
He Regulator failure	2	4	8
Helium line failure	2	4	8
Inadequate He mass flow rate	2	4	8
Cannot resolve pressure fluctuations	3	3	9
Housing seal failure/leakage	3	3	9
>+/-15psi pressure spikes	3	3	9
Vibration in the drive shaft	3	3	9
Pressure Sensor 2 Failure	2	5	10
Electronic Pressure Gauge Failure	2	5	10
Drive shaft breaking	2	5	10
Drive system failure	2	5	10
Exit Relief Valve Failure	2	5	10
Burst Disk Failure	2	5	10
He Relief Valve Failure	2	5	10
Vibration in the pump	5	2	10
Weight of gear pump causing injury	3	4	12
Testing Schedule	3	4	12
Manufacturing Schedule	3	4	12
Tolerance stack-up doesn't meet clearance requirements	3	4	12
Driveshaft seal failure/leakage	4	3	12
Over Pressure Drive System	4	3	12
Drive system can't operate at 10%	4	3	12
Over Budget	3	5	15
Tachometer Failure	3	5	15
Electronic Back Pressure Regulator Failure	3	5	15
He Electronic Pressure Regulator Failure	3	5	15

143

Risk Matrices: Highest List

i i	

List of Risks				
20	Pressure Sensor 2 Failure	2	5	10
21	Electronic Pressure Gauge Failure	2	5	10
35	Drive shaft breaking	2	5	10
36	Drive system failure	2	5	10
45	Exit Relief Valve Failure	2	5	10
46	Burst Disk Failure	2	5	10
52	He Relief Valve Failure	2	5	10
31	Vibration in the pump	5	2	10
2	Weight of gear pump causing injury	3	4	12
4	Testing Schedule	3	4	12
5	Manufacturing Schedule	3	4	12
9	Tolerance stack-up doesn't	3	4	12
,	meet clearance requirements	3	4	12
30	Driveshaft seal failure/leakage	4	3	12
37	Over Pressure Drive System	4	3	12
38	Drive system can't operate at 10%	4	3	12
3	Over Budget	3	5	15
22	Tachometer Failure	3	5	15
47	Electronic Back Pressure Regulator Failure	3	5	15
53	He Electronic Pressure Regulator Failure	3	5	15

Risk Average Severity Pt.1

ŗ	Γ.

Rick (aver a supprish)		Cost	Tashalad	Cabadula C	Cafab. C	Aug C	1.80
Risk (avg. severity)	L	Cost S		Schedule S		Avg. S	L*S
Loss of Power to Computer	1	1	2	1	2	2	2
He Manual Ball Valve Failure	1	2	2	2	3	3	3
Inadequate H2O mass flow rate	1	2	4	2	1	3	3
Pressure Gauge Failure	1	2	3	2	4	3	3
Assembly Schedule	2	1	2	2	1	2	4
Microcontroller failure	2	1	3	2	2	2	4
Computer Crashes	2	1	2	1	2	2	4
Labview Crashes	2	1	2	1	2	2	4
Incorrect Calibration of Tachometer	2	1	3	2	2	2	4
Housing breaking	1	3	4	4	2	4	4
Gears breaking	1	4	4	4	2	4	4
Thermal Material Failure	1	4	4	4	2	4	4
H2O Solenoid Valve Fail Open	2	1	3	1	2	2	4
He Solenoid Valve Fail Open	2	1	4	1	2	2	4
H20 Delivery Sys Failure	2	2	3	2	1	2	4
High pressure helium failure	1	3	4	3	5	4	4
K bottle regulator failure	1	3	4	2	5	4	4
Outlet Pressure Harm	2	4	1	3	4	3	6
Not hitting tolerances on gears	2	4	3	4	1	3	6
Not hitting tolerance on housing	2	3	3	4	1	3	6
Incorrect Pressure Data Acquisition	2	2	4	3	1	3	6
Incorrect Tachometer Data Acquisition	2	3	4	3	1	3	6
Noise in sensors	3	1	2	2	1	2	6
Incorrect Calibration of Pressure Transducers	2	1	3	3	2	3	6
Pressure Sensor 1 Failure	2	3	3	2	1	3	6
Cavitation	2	2	4	3	1	3	6
Bearing failure	2	2	4	3	1	3	6
Improper lubrication	2	2	4	2	1	3	6
Pressure buildup between teeth	2	3	3	4	2	3	6
Vibration in the drive shaft	3	1	3	4	1	2	6
vibration in the unive shart	э	1	э	1	1	2	0

Risk Average Severity Pt.2

T.	1 C

Vibration in the drive shaft313112Valve freezing322222Tube Failures222343H2O Manual Pressure Regulator Failure223233He Manual Pressure Regulator Failure2223343Pressure Sensor 2 Failure2354244Electronic Pressure Gauge Failure2353244Drive shaft breaking2355144Drive system failure2551444H2O Solenoid Valve Failure2444444He Solenoid Valve Failure2244444
Tube Failures222343H2O Manual Pressure Regulator Failure223233He Manual Pressure Regulator Failure222233Pressure Sensor 2 Failure235424Electronic Pressure Gauge Failure235344Drive shaft breaking235324Drive system failure255144Drive system can't operate at 10%413312H2O Solenoid Valve Failure224444Exit Relief Valve Failure224354
H2O Manual Pressure Regulator Failure223233He Manual Pressure Regulator Failure2222334Pressure Sensor 2 Failure2354244Electronic Pressure Gauge Failure2354344Drive shaft breaking2353244Drive system failure255144Drive system can't operate at 10%4133124H2O Solenoid Valve Failure2243544
He Manual Pressure Regulator Failure2222334Pressure Sensor 2 Failure2354244Electronic Pressure Gauge Failure2354344Drive shaft breaking2353244Drive system failure255144Drive system can't operate at 10%4133124H2O Solenoid Valve Failure2244444Exit Relief Valve Failure2243544
Pressure Sensor 2 Failure2354244Electronic Pressure Gauge Failure2354344Drive shaft breaking2353244Drive system failure255144Drive system can't operate at 10%4133124H2O Solenoid Valve Failure2444444Exit Relief Valve Failure2243544
Electronic Pressure Gauge Failure235434Drive shaft breaking235324Drive system failure25514Drive system can't operate at 10%413312H2O Solenoid Valve Failure244444Exit Relief Valve Failure224354
Drive shaft breaking 2 3 5 3 2 4 4 Drive system failure 2 5 5 5 1 4
Drive system failure 2 5 5 1 4 4 Drive system can't operate at 10% 4 1 3 3 1 2 4 H2O Solenoid Valve Failure 2 4
Drive system can't operate at 10% 4 1 3 3 1 2 4 H2O Solenoid Valve Failure 2 4
H2O Solenoid Valve Failure244444Exit Relief Valve Failure224354
Exit Relief Valve Failure 2 2 4 3 5 4
He Solenoid Valve Failure 2 4 4 4 4 4
He Relief Valve Failure 2 2 4 3 5 4
He Regulator failure 2 3 4 2 4 4
Helium line failure 2 3 4 3 3 4
Inadequate He mass flow rate 2 4 4 4 1 4
Weight of gear pump causing injury 3 1 1 3 4 3
Testing Schedule 3 1 3 4 1 3
Tolerance stack-up doesn't meet clearance requirements 3 3 4 3 2 3
Cannot resolve pressure fluctuations 3 3 3 3 2 3
Housing seal failure/leakage 3 2 3 3 1 3
>+/-15psi pressure spikes 3 2 3 3 1 3
Vibration in the pump 5 1 2 1 1 2 1
Burst Disk Failure 2 4 4 5 5 1
Over Budget 3 5 4 4 1 4 1
Manufacturing Schedule 3 4 4 4 1 4 1
Tachometer Failure 3 3 5 4 3 4 1
Driveshaft seal failure/leakage 4 2 3 3 1 3 1
Over Pressure Drive System 4 2 3 3 2 3 1
Electronic Back Pressure Regulator Failure 3 5 5 4 2 4 1
He Electronic Pressure Regulator Failure 3 5 5 4 2 4 1

Risk Matrices: Averages

Average Severity Matrix							
		Avgerage Severity					
			1	2	3	4	5
Likelihood			1	2	3	4	5
5	Near certainty >95%	5		31			
4	Highly Likely >65%	4			30,37		
3	Likely >35%	3				3,5,22,47,53	
2	Low likelihood <35%	2					46
1	Not likely <10%	1					

List of Risks		L	S	S	S	S	Avg S	
31	Vibration in the pump	5	1	2	1	1	2	10
46	Burst Disk Failure	2	4	4	4	5	5	10
3	Over Budget	3	5	4	4	1	4	12
5	Manufacturing Schedule	3	4	4	4	1	4	12
22	Tachometer Failure	3	3	5	4	3	4	12
30	Driveshaft seal failure/leakage	4	2	3	3	1	3	12
37	Over Pressure Drive System	4	2	3	3	2	3	12
47	Electronic Back Pressure Regulator Failure	3	5	5	4	2	4	12
53	He Electronic Pressure Regulator Failure	3	5	5	4	2	4	12

Cost Matrix							
		Severity					
			1	2	3	4	5
		Cost	Minimal or no impact	<1% of budget to replace	<5% of budget to replace	<10% of budget to replace	>10% of budget to replace
Likelihood			1	2	3	4	5
5	Near certainty >95%	5					
4	Highly Likely >65%	4					
3	Likely >35%	3				5	3,47,53
2	Low likelihood <35%	2					36
1	Not likely <10%	1					

List of Cost Risks		L	Cost S	
36	Drive system failure	2	5	10
5	Manufacturing Schedule	3	4	12
3	Over Budget	3	5	15
47	Electronic Back Pressure Regulator Failure	3	5	15
53	He Electronic Pressure Regulator Failure	3	5	15

Risk Matrices: Technical

Technical Matrix							
		Severity					
			1	2	3	4	5
		Technical	Minimal or no impact	Minor performance shortfall, same approach retained	Moderate performance shortfall, but work arounds available	Unacceptable, but work arounds available	Unacceptable; no alternatives exist
Likelihood			1	2	3	4	5
5	Near certainty >95%	5		31			
4	Highly Likely >65%	4			30,37,38		
3	Likely >35%	3				3,5,9	22,47,53
2	Low likelihood <35%	2					20,21,35,36
1	Not likely <10%	1					

List of Ris	ks			
			-	
20	Pressure Sensor 2 Failure	2	5	10
21	Electronic Pressure Gauge Failure	2	5	10
31	Vibration in the pump	5	2	10
35	Drive shaft breaking	2	5	10
36	Drive system failure	2	5	10
3	Over Budget	3	4	12
5	Manufacturing Schedule	3	4	12
9	Tolerance stack-up doesn't meet clearance requirements	3	4	12
30	Driveshaft seal failure/leakage	4	3	12
37	Over Pressure Drive System	4	3	12
38	Drive system can't operate at 10%	4	3	12
22	Tachometer Failure	3	5	15
47	Electronic Back Pressure Regulator Failure	3	5	15
53	He Electronic Pressure Regulator Failure	3	5	15

Risk Matrices: Schedule

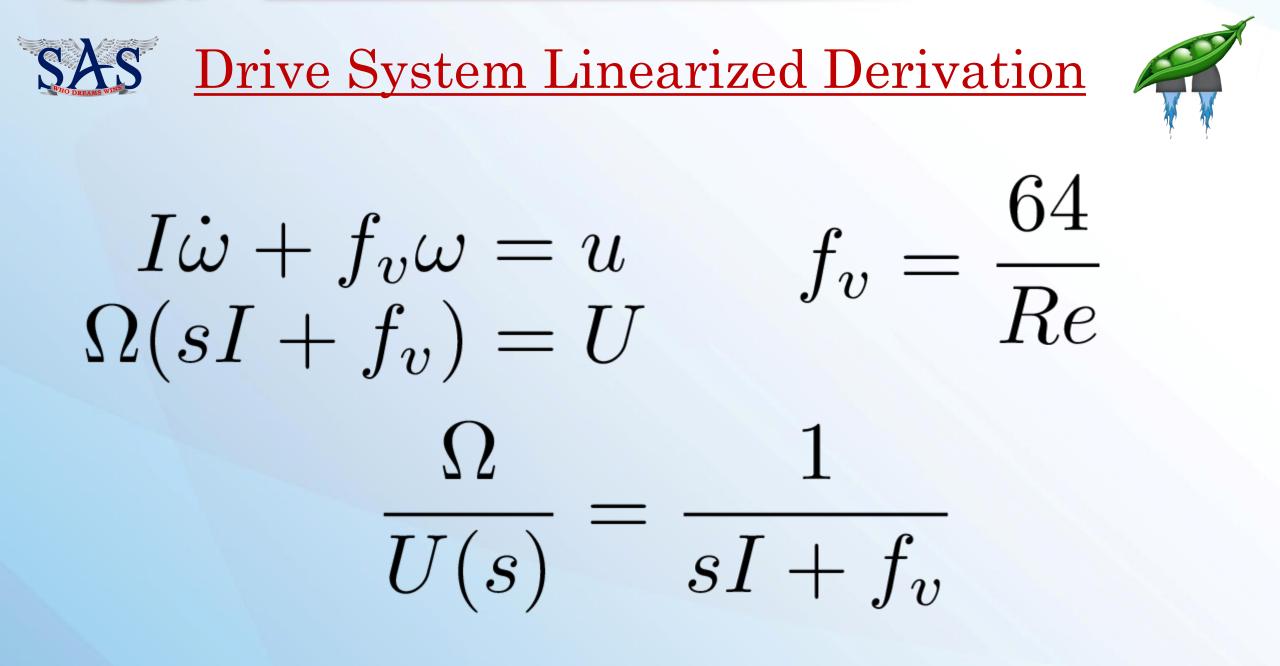
Schedule Matrix						-	· · · · · · · · · · · · · · · · · · ·
		Severity					
			1	2	3	4	5
		Schedule	Minimal or no impact	Additional activities required but able to meet key deadlines (few hrs - 1d)		Critical path affected (+3d)	Cannot achieve milestone
Likelihood			1	2	3	4	5
5	Near certainty >95%	5					
4	Highly Likely >65%	4			30,37,38		
3	Likely >35%	3				3,4,5,22,47,53	
2	Low likelihood <35%	2					36
1	Not likely <10%	1					

List of Risks				
36	Drive system failure	2	5	10
3	Over Budget	3	4	12
4	Testing Schedule	3	4	12
5	Manufacturing Schedule	3	4	12
22	Tachometer Failure	3	4	12
30	Driveshaft seal failure/leakage	4	3	12
37	Over Pressure Drive System	4	3	12
38	Drive system can't operate at 10%	4	3	12
47	Electronic Back Pressure Regulator Failure	3	4	12
53	He Electronic Pressure Regulator Failure	3	4	12

Risk Matrices: Safety

Safety Matrix							2
		Severity					
			1	2	3	4	5
		Safety		occupational illness not resulting in a lost work	Could result in: injury or occupational illness resulting in one or more lost work day(s)	Could result in: permanent partial disability,injuries or occupational illness	Could result in: death or permanent total disability
Likelihood			1	2	3	4	5
5	Near certainty >95%	5					
4	Highly Likely >65%	4					
3	Likely >35%	3				2	
2	Low likelihood <35%	2					45,46,52
1	Not likely <10%	1					

List of Risks				
45	Exit Relief Valve Failure	2	5	10
46	Burst Disk Failure	2	5	10
52	He Relief Valve Failure	2	5	10
2	Weight of gear pump causing injury	3	4	12


Embedded Systems

SAS Linearization of Drive System Model

- Linearize model for the RPM provided
- Allows to look at the control aspects of it

() $U(s) = sI + f_v$

- Stable control
- Phase margin: 70 80 degrees -> damping from 0.8 1.2
- Overshoot: < 10%
- Ramp error: 0.1 %

Electronics

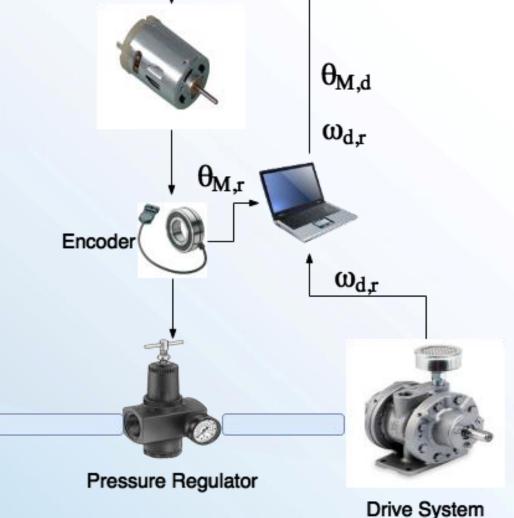
- Converting from ADC to pressure
- Find the MSMT out of the ADC to get the Voltage into the ADC
- Find the pressure out of the Pressure transducer
- Find pressure by dividing it by the voltage per pressure ratio

$$V_{ADC} = V_{out,max} \frac{MSMT}{2^{16}}$$

$$V_{Press} = \frac{V_{ADC}}{G} + V_{offset}$$

$$P = \frac{V_{Press}}{Ratio_{V2P}}$$

Automatic Pressure Regulator

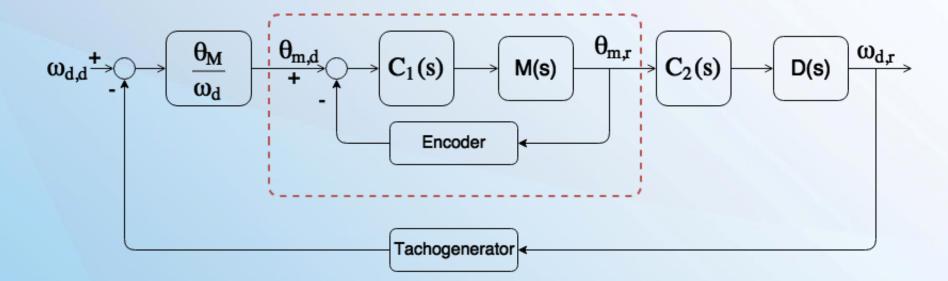


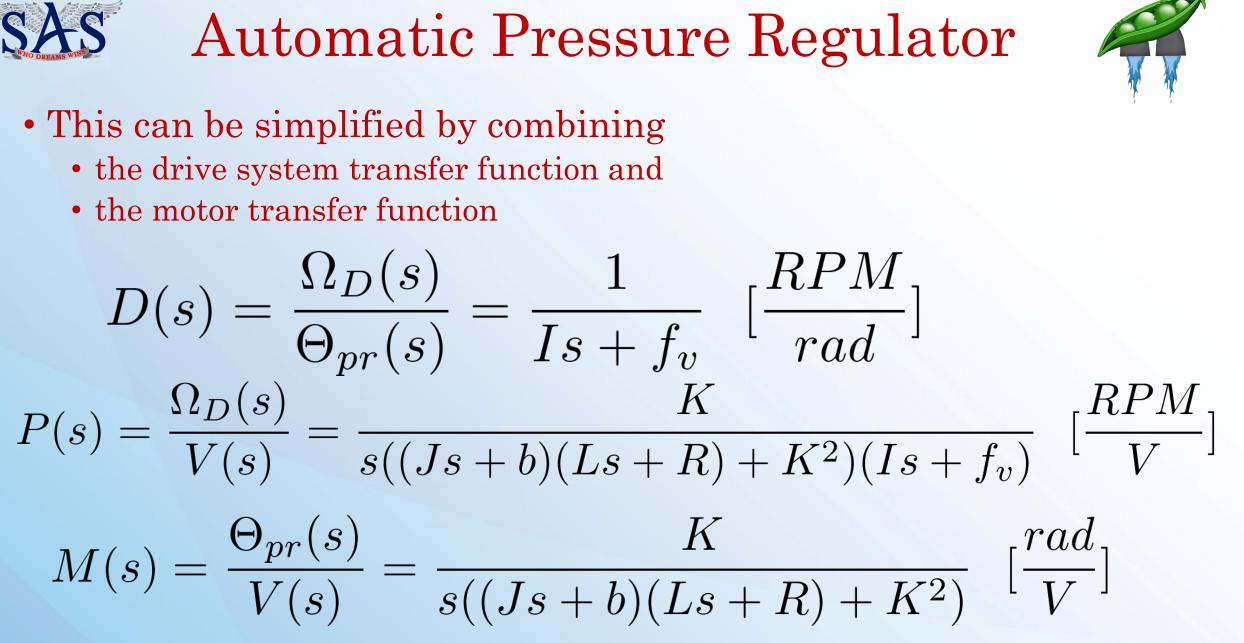
- Electronic pressure regulators with high volume flow are not found, but manual do exists
- Combining a manual pressure regulator with an encoder and stepper motor
- Motor shall have a minimum angular velocity of 300 RPM
- No error, and time of settle of less than 1 second

$\omega_{d,r}$

SAS Automatic Pressure Regulator FBD

- Controlling a stepper motor based on the position
- This position will allow the output pressure

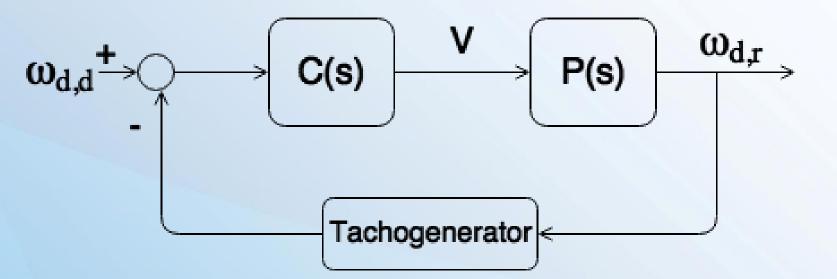




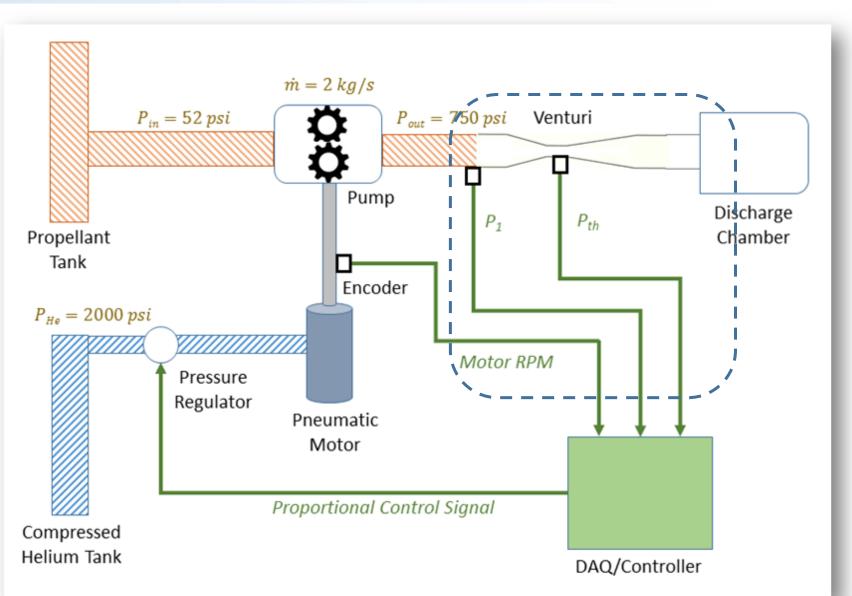
Automatic Pressure Regulator Diagram

- Control points of view for the pressure regulator
- Can be simplified by combining both plants
- Needs to be tested to find the correlation of angular position with output RPM

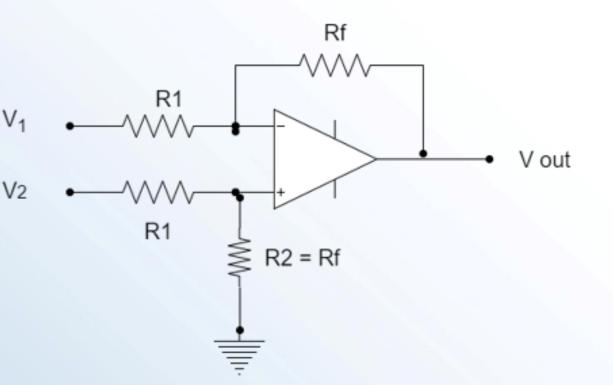
Pressure regulator control



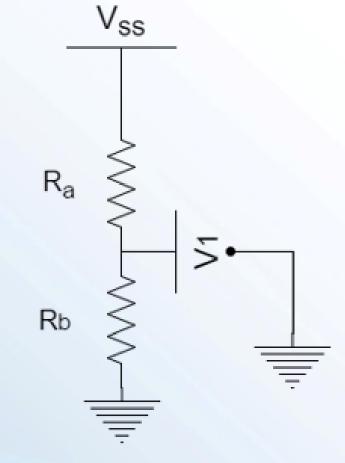
Automatic Pressure Regulator



- Simplified version of the model
- Allows to control the drive system based on the voltage input



<u>Signal Processing – Differential Amplifier</u>


- Use for creating an offset and applying a gain to the voltage out of the pressure transducer
- This will allow us to look at v₂ a range from 600 – 800 psi a with higher accuracy.

• Being able to from 28 V to .6 V

<u>Signal Processing – Voltage divider</u>

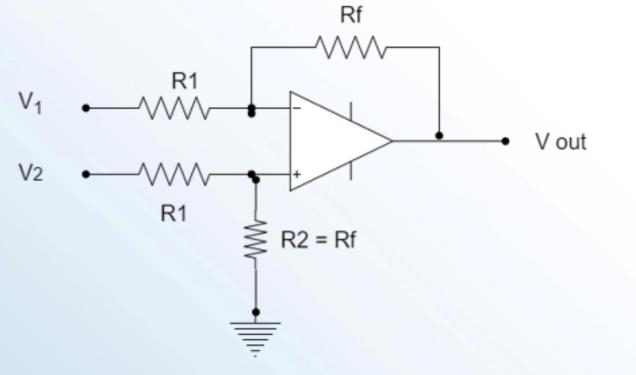
• The output will be used to provide the offset needed for V1

Low pass filter

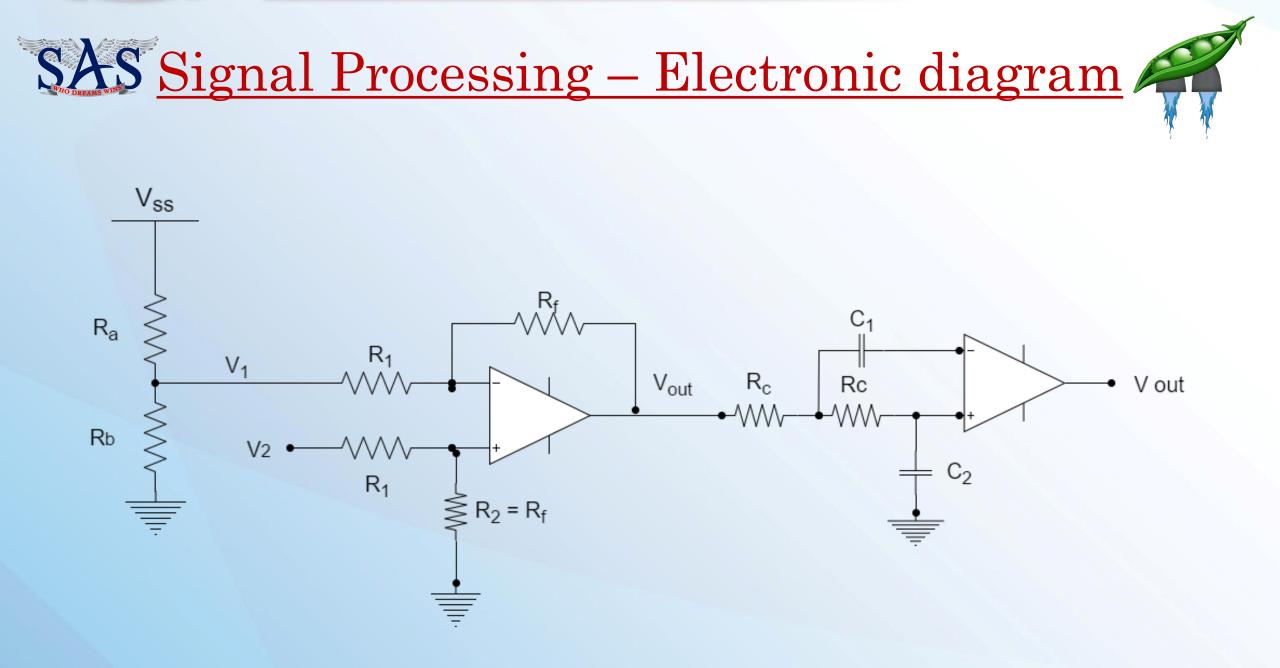
 $\underline{\text{Vs}}$

- Easy to make
- First order filter
- Only one pole

Sallen-key filter

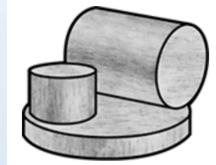

- Harder to make
- Second order filter
- Two poles

$$T = \frac{1}{1 + sRC}$$


$$T = \frac{\omega_0^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2}$$

S <u>Signal Processing – Noise Mitigation</u>

- Prevents to look at high frequencies that are irrelevant
- This will have a cutoff frequency at 2 kHz





Gear Block

4-1/2" Diameter

High-Strength 17-4 PH Stainless Steel Rod

Alloy	17-4 PH
Shape	Rod
Finish	Unpolished
Diameter	4 1/2"
Diameter Tolerance	+1/16"
Yield Strength	110,000 psi
Hardness	Hard (Rockwell C35)
Specifications Met	ASTM A564 and AMS 5643
Construction	Hot Rolled
Material Condition	Annealed
Material Composition	
Chromium	15-17.5%
Nickel	3-5%
Carbon	0-0.07%
Manganese	N-1%

Parts List: Pressure Transducer

Specifications	Specifications						
Product Type	Pressure Transmitter						
Media compatibility	Fluids compatible with 316L stainless steel and Hastelloy C287						
Output	4 to 20 mA (2-wire)						
Range	0 to 10,000 psi, sealed diaphragm						
Process connection	1/4" NPT(F)						
Electrical connections	DIN 43650 Form A demountable (mating connector supplied)						
Accuracy	$\pm 0.2\%$ full-scale (combined effects of nonlinearity, hysteresis, and repeatability)						
Power	7 to 28 VDC (Note: supply voltage is 7 to 32 VDC in nonhazardous area operation)						
Qty/ea	1						
Manufacturer number	PTX5072-TC-A1-CA-H6-PE						
Brand	GE Druck						
CE Compliance	Yes						

SAS Parts List: Piezo Pressure Transducer

PERFORMANCE			
Measurement Range (for ±5V output)	1000 psi	6895 kPa	
Useful Overrange (for ± 10V output)	2000 psi	13790 kPa	[2]
Sensitivity (±10 %)	5.0 mV/psi	0.725 mV/kPa	
Maximum Pressure	10000 psi	68950 kPa	
Resolution	5 mpsi	0.035 kPa	[3]
Resonant Frequency	≥500 kHz	≥500 kHz	
Rise Time	≤1.0 µ sec	≤1.0 µ sec	
Low Frequency Response (-5 %)	0.005 Hz	0.005 Hz	
Non-Linearity	≤1.0 % FS	≤1.0 % FS	[1]

Parts List: Tachometer

Speed Ranges Range 1 Range 2	100 - 6000 RPM 1000 - 60,000 RPM
Resolution	+/- 1.5mV
Accuracy	+/- 0.5%
Optical Range	50 - 1000mm
Optical angle	+/- 45 deg.
Light Source	Red LED
Optical Angle	+/- 45 Degrees
Carry Case	Included
Contact Adapter	Optional
Voltage Output	-6 vdc Both Ranges
Connections	Coiled cable with 2 x 4mm plugs fitted

Parts List: Pressure Regulator

TECHNICAL SPECS

Item	General Purpose Air Regulator	Gau	uge Port	1/4" NPT
Pipe Size (Regulators)	1"	Ser	ies	R119
Max. Flow (Regulators)	400 cfm	Val	ve Design	Balanced
Max. Flow Range	Greater than 301 cfm		erall Height egulators)	10.02"
Max. Inlet Pressure (Regulators)	300 psi		erall Width egulators)	4.69"
Max. Temp. (Regulators)	125 Degrees F	Ove	erall Length	4.69"
Adjustment Range (Regulators)	0 to 125 psi	Boo	dy Material	Aluminum
Overall Height Range	Greater than 8.01 in.	Incl	ludes	Regulator, (2) Gauge Plugs
Adjustment Knob	Nonrising			

Parts List: Back Pressure Regulator

MODEL	PROCESS PORT SIZE	REFERENCE PORT SIZE	BODY MATERIAL	MAX PRESSURE RATING	MIN CV	MAX CV	DIM A	DIM B
							SEE FI	GURE 1
BD12S	1.5"	1/8"	Stainless Steel 316/316L	50	0.1	14.3	9.5	3.9
BDM12S	1.5"	1/8"	Stainless Steel 316/316L	150	0.1	14.3		
BD12A	1.5"	1/8"	Anodized Aluminum		0.1	14.3	9.5	3.9
BD12P	1.5"	1/8"	PVC	50	0.1	14.3	9	4.3
BD16S	2"	1/8"	Stainless Steel 316/316L	75	0.3	30.2	11	4.1
BDM16S	2"	1/8"	Stainless Steel 316/316L	150	0.3	30.2		
BD16A	2"	1/8"	Anodized Aluminum		0.3	30.2	11	4.1
BD16P	2"	1/8"	PVC	65	0.3	30.2	11	5.1
BD24S	3"	1/4"	Stainless Steel 316/316L	50	0.6	60	15	6.1
BDM24S	3"	1/4"	Stainless Steel 316/316L	100	0.6	60		
BD24A	3"	1/4"	Anodized Aluminum		0.6	60	15	6.1
BD24P	3"	1/4"	PVC	30	0.6	60	15	8.8
BD32S	4"	1/4"	Stainless Steel 316/316L	75	1.5	160	20	8.1
BD32A	4"	1/4"	Anodized Aluminum		1.5	160	20	8.1
BD32P	4"	1/4"	PVC	30	1.5	160	20	9.6

SAASS-]	Parts List: Step mo	tor
Holding Torque ?	Bipolar (Series) 0.84 N·m Unipolar 0.6 N·m		
Shaft/Gear Type	Round Shaft (No Gearhead)		
Shaft	Single		
Туре	Standard		
Encoder	Not Equipped		
Basic Step Angle	1.8°		
Output Step Angle	1.8 °		
Electromagnetic Brake	Not Equipped		
Motor Connection Type	Flying Leads		
Connection Type	Bipolar (Series) Unipolar	PK256-02B Bipolar (Series)	PK256-02B Unipolar
Current per Phase (A/phase)	1.4 [Bipolar (Series)] 2 [Unipolar]	Bipolar Constant Current Driver With Damper D6CL-6.3F : $J_L = 0.77$ oz-in ² (140×10 ⁻⁷ kg-m ²)	Power Input: 24 VDC Unipolar Constant Current Driver With Damper D6CL-6.3F : $J_L = 0.77$ oz-in ² (140×10 ⁻⁷ kg·m ²)
Lead Wires	6	1.0 140 24 VDC	0.8 Step Angle: 1.8"/step Unipolar (2.0 A/Phase)
Voltage (VDC)	4.2 [Bipolar (Series)] 3 [Unipolar]	0.8- 120 Bipolar Series (1.4 A/Phase) 48 VDC	0.6 - co
Resistance (Ω/phase)	3 [Bipolar (Series)] 1.5 [Unipolar]		
Inductance (mH/phase)	5.6 [Bipolar (Series)] 1.4 [Unipolar]	E 0.6 - 20 80 abuo 0.4 - 50 60 Pullout Torque	[III.v] anbug anbug up 40
Rotor Inertia	230×10 ⁻⁷ kg·m ²	40	0.2-
RoHS Compliant ?	Yes	20	20
		0 0 1500 2000 500 1000 1500 2000 Speed [r/min] 0 2 4 Full Step Pulse Speed [kHz]	0 0 500 1000 1500 2000 Speed [r/min] 0 2 4 176 Full Step Pulse Speed [kHz] 176