
ASPECT-RATIO REDESIGN OF EAGLE OWL FOR STORMCHASING

TEAM	Matt Alexander, Carson Brumley, Will Butler, Alejandro Corral, Elliott Davis, Ryan Davis, Cody Goldman, Thomas Kisylia, Connor Myers, Erika Polhamus, Alec Stiller, Yuma Yagi
ADVISOR	Dr. Donna Gerren

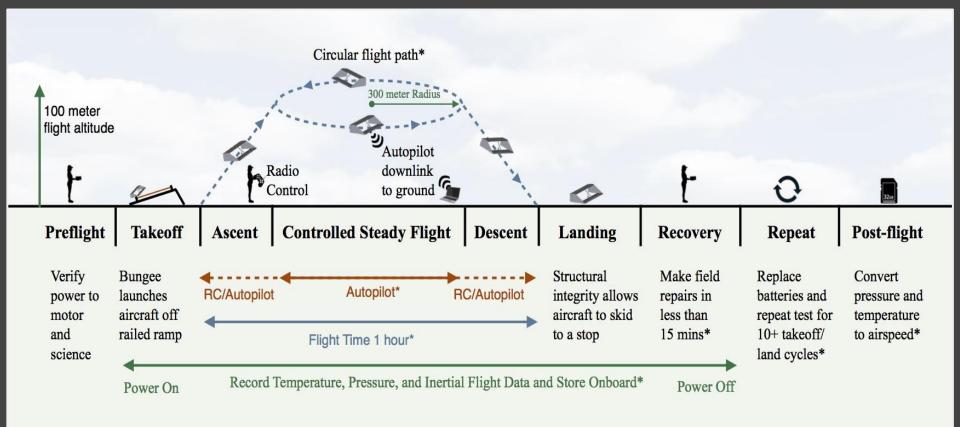
SPONSOR Dr. Brian Argrow

Agenda

- Project Overview
- Executive Summary
- Scheduling
- Airframe Status
- Avionics Status
- Takeoff Status
- Project Budget
- Backup Slides

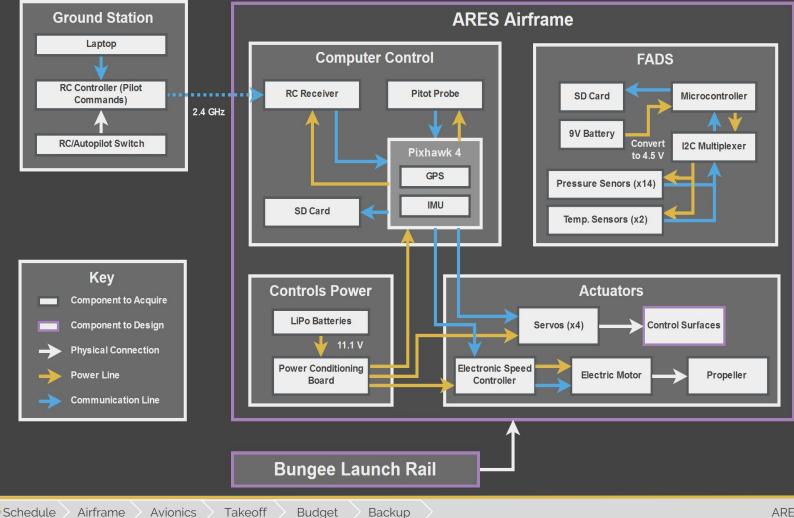
PROJECT OVERVIEW

Overview Schedule Airframe Avionics Takeoff Budget Backup


PROJECT OBJECTIVES

- Aspect-ratio Redesign of Eagle-owl for Stormchasing (ARES) will build upon the previous Eagle Owl project by designing, building, and testing a box-wing unmanned aircraft with a flush airdata sensing system (FADS) to measure relative wind velocity with the objective of creating a high endurance system that can eventually fly into extreme weather conditions.
- The ARES rendition of Eagle Owl will increase the aspect ratio, add an hour of endurance, integrate an autopilot, pressure sensors, and a temperature sensor which are incorporated in the FADS system, all within the wings of the aircraft.

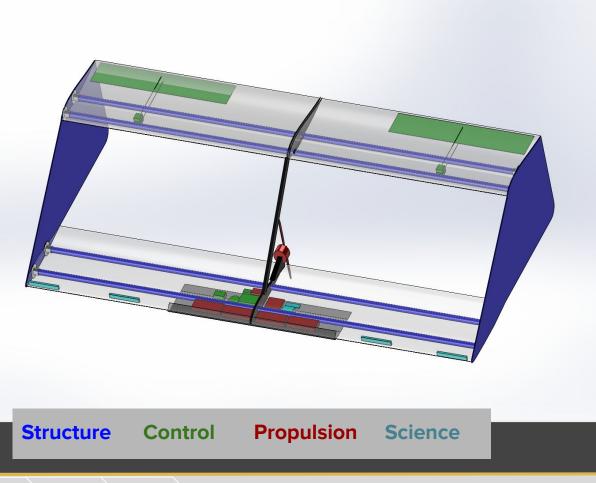
CONOPS


Location: Boulder Aeromodeling Society Airfield or CU Boulder South Campus

*customer defined

FUNCTIONAL BLOCK DIAGRAM

Overview



BASELINE DESIGN REVIEW

	<u>cu bould</u>	ŦR
ľ		>

Coefficient	Value
(L/D)cruise	13.8
CL,max	0.809
Cruise	5.20 deg
Vcruise	11.1 m/s
C Istall	13.9 deg
Vstall	8.36 m/s
Endurance	80 min
Mass	4 kg

Overview Schedule Airframe Avionics Takeoff

ARES MSR 7

LEVELS OF SUCCESS

	Data Capture	Landing	Navigation & Control	Flight
Level 1	FADS system integrated and recording continuous pressure data while powered. Record continuous local temperature and inertial measurements to onboard storage while powered	Airframe can survive a simulated landing cycle outside of flight test	Control surfaces are actuated in response to RC input and autopilot feedback look; autopilot verified by feeding in test data on ground	Provide flight models and simulations to show that the design can complete design objectives
Level 2	Level 2 objectives are the same as Level 1 objectives	for consecutive takeoff and landing cycles with only power	-	Takeoff with no damage to sensors, structure, or operators. Achieve steady, level flight with no more than 3m divergences
Level 3	to aircraft-relative wind	Consecutive takeoff and landing cycles occur a minimum of 10 times	Full flight with takeoff and landing achieved with autopilot	Flight endurance is 1 or more hours with all systems powered

CRITICAL PROJECT ELEMENTS

CPE	Description
Aircraft Manufacturing	Construction of the aircraft is integral to the project's success. With no aircraft, nearly all project objectives are not met.
Avionics and Science	ARES must have an avionics system on board to achieve its power needs for all other CPEs. The FADS system must be integrated into this system as well to measure and record data.
Autopilot and Control	The autopilot and control CPE is driven by the need to maintain stability and must achieve an automated, large diameter circular flight.
Propulsion	To maintain flight, the ARES aircraft must have an on board propulsion system. This must be able to provide enough thrust efficiently enough to achieve a 1 hour flight time.
Takeoff	The aircraft must be able to take off successfully in order to achieve any of its other top level successes. Without this, the project risks not meeting several requirements.

EXECUTIVE SUMMARY

	Status	Hours	Comment
Airframe	On Schedule (After Adjustments)	17/269	 Ship & Lead times delayed schedule Adjustments kept us on track
Avionics	On Schedule	107/241	- Software production, board production, and initial testing in progress
Takeoff	Ahead of Schedule	70/133	 Entire system nearly complete Allows for more time to test

Budget

- We bought enough material for **3 airframes**
- We have **\$575** left
- Applying for money from College of Engineering & Aero dept for AIAA travel

SCHEDULING

Overview Schedule Airframe Avionics Takeoff Budget Backup

AIRFRAME SCHEDULE

Task name	Start da la	End date	Janua	ary			February	/		
			3 Week	4 Week	5 Week	6 Week	7 Week	8 Week	9 Week	10 Week
Total estimate	01/14/	05/06/			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
 Airframe Manufacturing 	01/14/	03/08/				virframe Ma	nufacturing			
Finish Center Strut Design	01/14/	02/01/	Finish C	Center Strut I	Design					
Obtain Materials	01/14/	03/01/			Ob	ain Materia	ls			
Cut Out Joints	01/22/	02/12/		L)	Cut Out J	vints				
Determine Material for Sidewalls (Test Model)	01/29/	02/04/			Dete					
Make Plastic Inserts for Joints	01/29/	02/05/			Make					
Cut EPP Foam for Wings (Both Models)	02/03/	02/10/			4	Cut E	Cut EPP F	oam (0/10	bh)	
Attach Inserts to Rods	02/05/	02/07/				→ @A				
Cut Out Sidewalls (Test Model)	02/05/	02/09/					Make Test	Model Sid (0/8h)		
Make Control Surfaces (Full Model)	02/08/	02/13/				M	director and	(0/01)		
Final Test Model Assembly	02/08/	02/15/				→Œ	inal T			
Cut out Electronics Locations in Airfoil (Full M	02/11/	02/16/					Cu]		
Attach Control Surfaces (Full Model)	02/13/	02/18/					→ Att			
Insert Servos / Piano Wire (Full Model)	02/13/	02/18/		omplet	0		Ins.			
Make Prop Motor Mount	02/18/	02/25/						Make		
Insert Avionics Components (Full Model)	02/22/	03/05/		n Progre					nsert Avionic	
Insert Controls Components (Full Model)	02/22/	03/05/		ot Starl	ted				nsert Control	
Insert Propulsion Components (Full Model)	02/22/	03/05/	<u>—</u> с	ritical P	ath				Insert Propul	-
Make Carbon Fiber Plate	02/22/	03/04/		halleng	e Task				Make Carb	
Attach Motor Mount (Full Model)	02/25/	03/03/		i anci b	e rusk	Make Ca	arbon Fibe		e, Atta	
Attach Motor/Spinner/Prop to Mount (Full Mod	03/03/	03/05/					(4/4		4	A
Cut Out Sidewalls and Strut (Full Model)	03/04/	03/08/			L		Make		el Sidewalls	
Attach Carbon Fiber Plate (Full Model)	03/04/	03/08/						(0/8h)	• A
Final Full Model Assembly	02/22/	03/08/				Today			Final Full Mo	del A

Overview

Schedule Airframe Avionics Takeoff

ARES MSR 12

AVIONICS SCHEDULE

Task name		Start dale	End date	Janua	ary			Februa	гу		
				3 Week	4 Week	5 Week	6 Week	7 Week	8 Week	9 Week	10 Week
Avionics Manufacturing	()	01/14/	03/05/	9//////////////////////////////////////		///////A	v <mark>.onics</mark> Manuf	facturing			
Epoxy FADS Boards and Add Tubing	()	01/14/	01/22/	Epoxy F						omplet	
Get Code to Build on Pixhawk4	(i)	01/14/	02/01/	Get Coo	de to Build or	ı Pix				0.00	
FADS Code to Write to SD	()	01/21/	01/29/		FADS C					Progre	
Create Teensy / 9V Power Circuit	()	01/21/	01/28/		Creat				N	ot Star	ed
Circuit Board Construction	()	01/21/	02/05/		Circuit B	oard Const			— C	ritical P	ath
FADS Code to Pull Data	(i)	01/22/	02/06/		FADS	Code to Pu			C	halleng	e Task
Finalize FADS Code	()	02/05/	02/11/	FADS Co	ode Pulling	and the second	→ Final	-			
Compile FADS Code on Teensy	()	02/08/	02/13/		(10/	'20h)		o			
Develop Flight Plans on Pixhawk4	(i)	02/12/	03/01/				<u>i</u>		op Flight Pla	ns on	
Create Propulsion Power Circuit	()	02/13/	02/18/				1	Cr.	Develop Fli		
Build Servo Connections	()	02/13/	02/18/					Bui	3200	(0/40h)	
Combine All Components and Prep for DITL	(i)	02/22/	03/05/				Today			Combine All	

TAKEOFF SCHEDULE

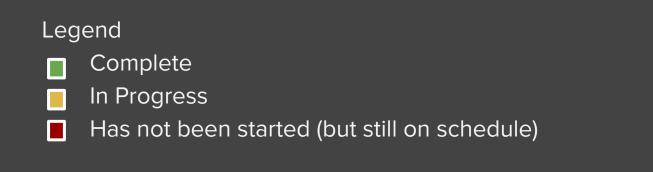
Task name		Start dale	End date	Janua	ary			Februa	ry
				3 Week	4 Week	5 Week	6 Week	7 Week	8 Week
Takeoff Manufacturing	(i)	01/14/	02/15/		Takeo	off Manufactr	ring		
Obtain Takeoff Materials	()	01/14/	01/22/	Obtain T				Comple	to
Bead Blast, Drill, & Tap Center Rail	()	01/18/	01/27/		Bead Bla	H			
Cut, Drill, & Tap Center Support Rods	(j)	01/18/	01/27/	→ C	ut, Drill,	H		n Progr	
Drill & Tap Holes for Center Rail Clips	1	01/18/	01/27/	└ →∭⊡	Drill & Ta			lot S <mark>t</mark> ai	rted
Weld Center Rail Clips	()	01/25/	01/28/		→ w	/e	<u> </u>	Critical	Path
Cut, Drill, & Tap Legs	(i)	01/25/	02/02/			ut, Dril		hallen	ge Task
Drill & Tap Tail Post	()	01/25/	02/02/		D	rill & T			
Cut & Drill Rubber Stoppers	(i)	01/25/	02/02/		C	ut & D			
Obtain Scrap Metal for Release	()	01/29/	02/02/			·////			
Bend, Drill, & Tap Plate Metal for Release	()	01/29/	02/08/			Bend,	Drill,		
Bend, Drill, & Tap Lever Arm	()	01/29/	02/08/			Bend,	Drill,		
Drill & Tap Tube for Release	()	01/29/	02/08/			Drill &	Тар		
Bend, Drill, & Tap Carriage Clip for Release	1	01/29/	02/08/			Bend,	Drill,		
Drill & Ream Standoffs	(i)	02/01/	02/08/				ill &		
Cut, Drill, & Tap Carriage Plate Metal	()	02/03/	02/08/			4	Cu		
Obtain Additional Takeoff Materials	()	02/08/	02/15/					Obtain 🔬	
Attach Carriage Clip for Release	()	02/08/	02/12/						
Bend, Drill, & Tap Sheet Metal for Carriage U	(i)	02/08/	02/12/					3	
Bend, Drill & Tap Sheet Metal for Carriage Clips	(i)	02/08/	02/12/					3	
Final Takeoff Assembly		02/12/	02/15/			Ц	Today		

Overview

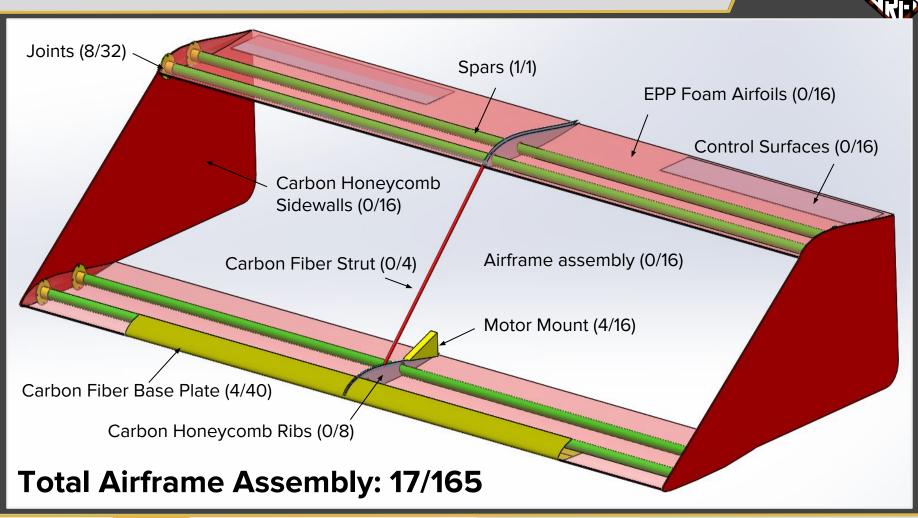
Schedule

Backup

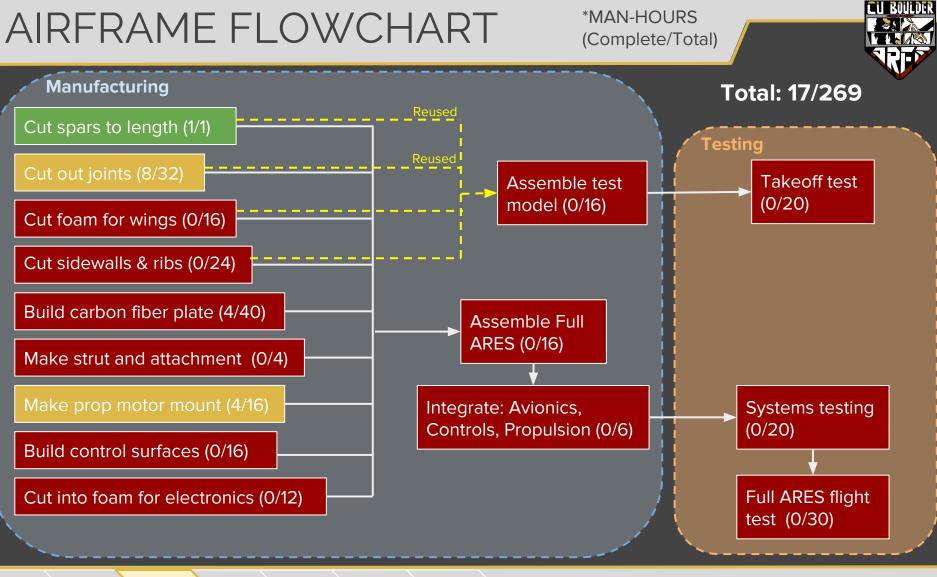
ARES MSR 14


TESTING SCHEDULE

				У			Februa				Mar					April	
				4 Week	5 Week	6 Week	7 Week	8 Week	9 Week	10 Week	11 Week	12 Week	13 Week	14 Week	15 Week	16 Week	17 Week
Unit Testing		01/21/	03/03/			Unit	Testing			8							
Microcontroller Setup		01/21/	01/25/	-													
Pixhawk Setup		01/21/	01/25/	P													
Battery Charging / Discharging		01/25/	02/02/		Battery							_	Con	nplete			
Pixhawk Sensor Calibration		01/26/	02/15/	4	Pixhawk S	ensor Calib	ration	Pixhawk Se	nsor Cali	bration				192			
Bungee Recovery Testing		01/30/	02/06/		Bung	ə 🖗			(25/3	0h)			📃 In P	rogres	S		
FADS in Fridge (Seal Test)		02/05/	02/10/			→ FA			100 200				Not	Starte	he		
FADS in Wind Tunnel		02/05/	02/14/			FADS	in										
Control Surface Response		02/11/	03/03/				→ Con	trol Surface R	e ponse			1	- Crit	ical Pa	th		
Ballistic Mass Takeoff		02/15/	02/24/				→E	Ballistic M	-	1			Cha	llenge	Task		
Initial Field Testing		02/15/	03/04/					Initial Fiel	d esting					0			
Test Airframe Model Glide		02/15/	02/24/				L,	Test Airfra									
Propulsion Dynamometer		02/15/	03/04/					Propulsion D	ynamomete								
Test Airframe Model Takeoff Launch		02/22/	03/01/						est Ai	Toot Airf	ame" Tak	a ff Test					
Test Airframe Model Takeoff Stability		02/22/	03/01/						est Ai	lest Airi	(0/20		5				
Test Airframe Model Takeoff Survival		02/22/	03/01/						est Ai		(0/20	511)					
Test Airframe Model Landing Survival		03/01/	03/04/						L.	es							
Full Systems Testing		03/05/	04/22/									F	Full Systems	Testing			
Avionics Day in the Life		03/05/	03/13/							Avion	cs						
Controls Day in the Life		03/05/	03/13/							Contr	ols -						
Powered Takeoff		03/18/	03/21/						Dat	y in the L	ife Tests						
RC Short Flight		03/22/	03/26/						Du	, in the L	(0/20h						
Autopilot Short Flight		03/27/	04/01/								(-/2011			Ful	Flight Te	sting (0/3	Oh)
Full Flight		04/02/	04/22/			Today							BEAUSE	····	- ingrite ite	5 (5 / 5	
FuirFlight	U	04/02/	04/22/			, iouay									10.5110 0110	1110 Contraction of the	



AIRFRAME STATUS


AIRFRAME OVERVIEW

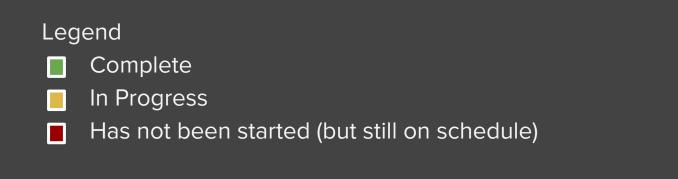
*MAN-HOURS (Complete/Total)

Overview Schedule Airframe Avionics Takeoff Budget Backup

CU BOULDER

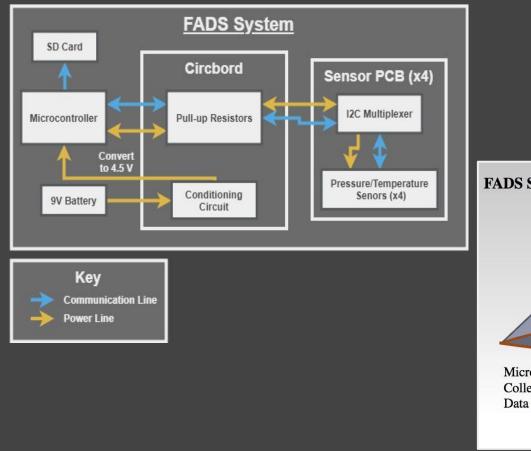
Overview Schedule Airframe Avionics Takeoff Budget Backup

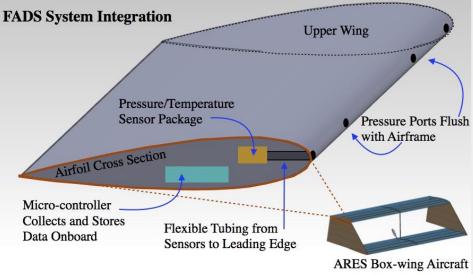
AIRFRAME CHALLENGES

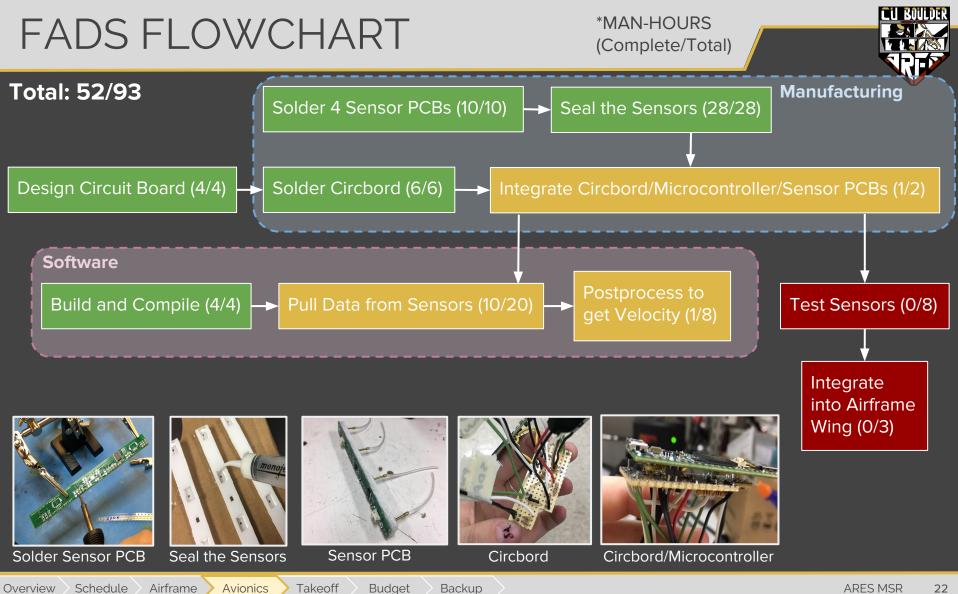


- Carbon Honeycomb
 - Honeycomb on back order from US company so had to order from China
 - Happy Chinese New Year! Business shuts down production for 2 weeks - delayed honeycomb shipment
 - Expected delivery by 3/1
- Off-ramp: Use alternate material (corrugated plastic) for takeoff testing

- EPP Foam
 - Tracking number puts it in New York
 - Expected delivery by 2/8
- Back up: Borrow from Dr. Lawrence until delivery (trade foam for foam)


AVIONICS STATUS

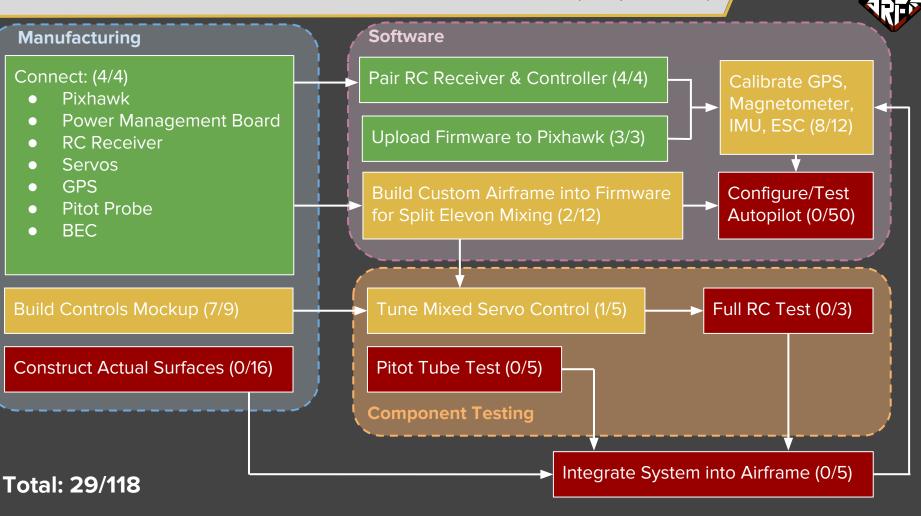



Overview Schedule Airframe Avionics Takeoff Budget Backup

FADS SCHEMATIC

Avionics Overview Schedule Airframe Takeoff

FADS CHALLENGES


- Design of new FADS Circbord
 - Change was made due to required pull-up resistors
 - Forced Circbord design for connections
 - Additional 10 man-hours
 - No additional budget cost
- FADS data challenges
 - Pulling data has proved harder than we expected
 - Expecting 10 hours longer than prior expectations
 - No additional budget cost

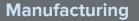
CONTROLS FLOWCHART

*MAN-HOURS (Complete/Total)

Overview Schedule Airframe Avionics Takeoff Budget Backup

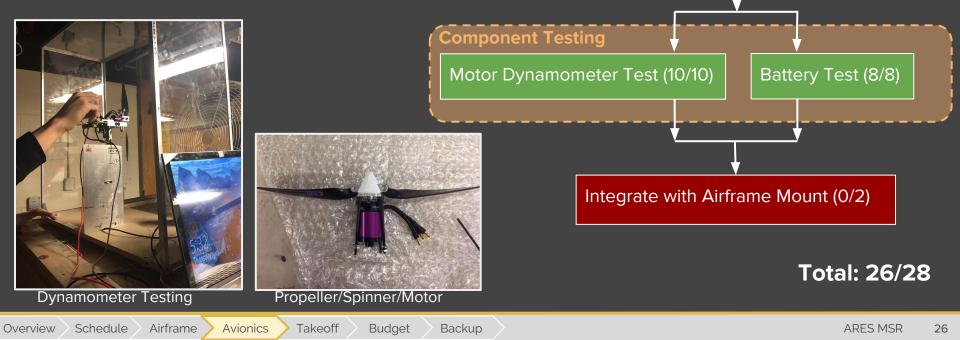
CU BOULDER

CONTROLS CHALLENGES

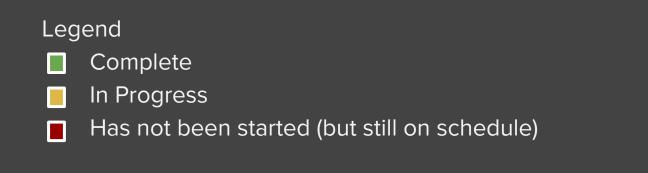

- Software
 - Calibration of compass took longer than expected; issue now resolved
 - Added 6 hours
 - No additional budget cost
- Manufacturing
 - Trailing edge very thin, gets hard to cut with foam cutter
 - Multiple practice cuts completed to try different parameters
 - Increased kerf buffer distance on certain sections
 - Going to turn off heated wire on backtracking sections
 - Balsa sandwiching
 - Servo push rods acquired were too flimsy, purchased stronger ones
- None of the above items have pushed our schedule back

PROPULSION FLOWCHART

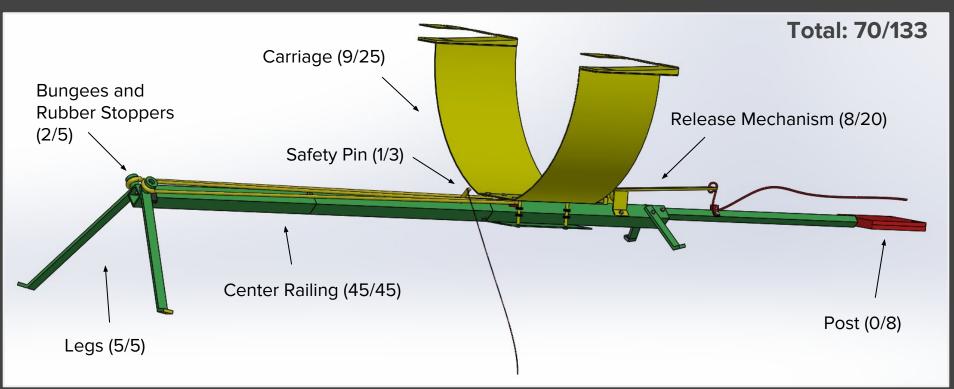
*MAN-HOURS (Complete/Total)



Connect Propeller, Spinner and Motor (2/2)


Connect 4 Batteries in Parallel (1/1)

Integrate with Electronic Speed Controller and Batteries (5/5)


TAKEOFF STATUS

TAKEOFF SCHEMATIC

*MAN-HOURS (Complete/Total)

Overview Schedule Airframe Avionics Takeoff Budget Backup

TAKEOFF FLOWCHART

*MAN-HOURS (Complete/Total)

TAKEOFF CHALLENGES

- Bungees
 - Current design: 4 segments of silicon tubing (budget/size decision)
 - Change from KBand Victory Ropes
 - Required displacement of 2m and force of 400 N still met
 - Heritage on X8 Skywalker Launcher
 - Load testing performed; no degradation in bungees after 100 tests

PROJECT BUDGET

Overview Schedule Airframe Avionics Takeoff Budget Backup

ORDERS AND DELIVERIES

Company	Subsystem	Cost	Delivery Status
Sparkfun	Avionics	\$62.42	Delivered
Venom	Propulsion	\$383.92	Delivered
Hacker/Graupner	Propulsion	\$270.12	Delivered
Amazon	All	\$190.03	Delivered
Drotek	Controls	\$124.50	Delivered
Horizon/Holybro/F3 a	Controls	\$493.91	Delivered
McMaster Carr	Takeoff	\$617.68	Delivered
Rockwest/ACP	Airframe	\$660.80	Delivered
Tower Foam	Airframe	\$306.10	Shipped
CA Composites	Airframe	\$1000	In Production

Takeoff

Avionics

Budget

Backup

Airframe

Overview

Schedule

*All parts have been ordered.

*We bought enough material for 3 airframes

Tower Foam

- Scheduled for delivery on 2/8/19

CA Composites

-Expected delivery 3/5/19-Back-up: Use alternate material (foam board) for the launch test

ARES MSR 32

BUDGET

Subsystem	Spent	
Airframe	\$1996.90	11% Airframe
Avionics	\$81.42	6% Avionics
Controls	\$643.41	40%Controls12%PropulsionTakeoff
Propulsion	\$774.04	 Spent in Fall Budget Left
Takeoff	\$612.68	15% 13% 2%
Spent in Fall	\$316.41	
Total	\$4424.47	*Note: During manufacturing we discovered we needed a

Left: \$575.53

*Note: During manufacturing we discovered we needed a few more parts so we have spent \$156.56 more than we predicted last semester.

ACKNOWLEDGEMENTS

CU BOULDER

- Dr. Brian Argrow
- Dr. Donna Gerren
- Dr. Jelliffe Jackson
- Dr. Dale Lawrence
- Matt Rhode
- Bobby Hodgkinson
- Adrian Stang

- Trudy Schwartz
- Ian Cooke
- Christine Reilly
- Dan Hesselius
- Ken Jochim
- Murray Lull
- Christopher Choate

REFERENCES

"High Performance 6 - Axis MEMS MotionTracking™ Device in 4x4 Mm Package." *TDK*, 14 Mar. 2018.

"Small, Versatile 6DoF Sensor Module." BOSCH, 24 July 2014.

https://www.hacker-motor-shop.com/Hacker-eCalc-Setup-calculator.htm?shop=hacker_e&SessionId=&a=catalog&p=7334

Hantae Kang, Nicola Genco, and Aaron Altman. "Gap and Stagger Effects on Biplanes with End Plates: Part I", 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings.

Lance W. Traub. "Range and Endurance Estimates for Battery-Powered Aircraft", Journal of Aircraft, Vol. 48, No. 2 (2011), pp. 703-707.

"Horizon Hobby." Horizon Hobby, 11 Oct. 2018, https://www.horizonhobby.com/content/e-flite-rc

"Venom Power." Venom Power, 7.12, 12 Oct. 2018, https://www.venompower.com.

"XFLR5." XFLR5, 6.43, 10 Oct. 2018, www.xflr5.com/xflr5.htm.

Dimitriadis, G. "Flight Dynamics and Control Lecture 4: Lateral Stability Derivatives." University of Liege,

www.ltas-aea.ulg.ac.be/cms/uploads/FlightDynamics04.pdf.

Mueller, Markus. "ECalc Hacker Motor." ECalc - PropCalc - the Most Reliable Propeller Calculator on the Web, ecalc.ch/motorcalc.php?usahacker.

"Hacker Motor USA Brushless Motors and Servos for RC and Industry!" Hacker Motor USA, hackermotorusa.com/.

Raymer, D.P., Aircraft Design: A Conceptual Approach American Institute for Aeronautics and Astronautics. Print

PHOENIX EDGE LITE 75 AMP ESC, 8S / 33.6V WITH 5 AMP BEC,

www.castlecreations.com/en/phoenix-edge-lite-75-esc-010-0112-00.

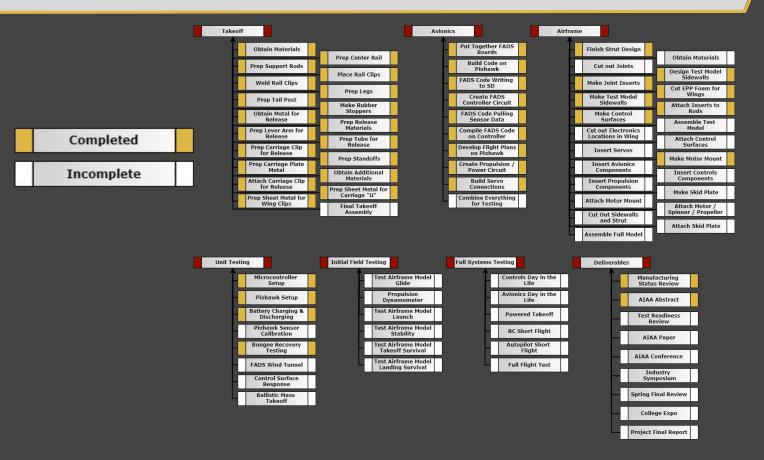
Staples, Gabriel. "Propeller Static & Dynamic Thrust Calculation - Part 2 of 2 - How Did I Come Up With This Equation?"

ElectricRCAircraftGuy.com--RC, Arduino, Programming, & Electronics, 1 Jan. 1970,

www.electricrcaircraftguy.com/2014/04/propeller-static-dynamic-thrust-equation-background.html.

QUESTIONS?

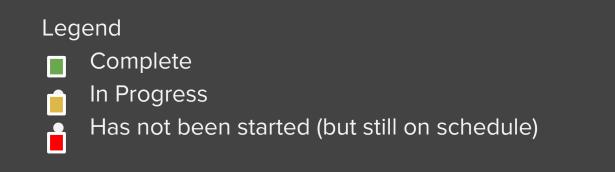
Overview Schedule Airframe Avionics Takeoff Budget Backup



BACKUP SLIDES

Overview Schedule Airframe Avionics Takeoff Budget Backup

WORK BREAKDOWN STRUCTURE

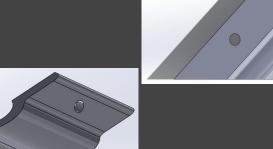

Challenges (So Far and Forseen)

- Airframe
 - Delay on Foam delivery
 - Delay on Honeycomb delivery
- Avionics:
 - Pull-up resistor requirements
 - Forced 4 day delay on microcontroller testing
 - Battery discharging and charging tests
 - Embedded software communication
- Takeoff
 - Bungee Performance
 - Release Mechanism

AIRFRAME BACKUP

FRAMES (Spars, Joints, Strut)

RE


Spars

- Arrived
- Cut to length
- Joints
 - Material procured
 - In process of manufacturing
- Carbon fiber rod
 - Bracket attachment
 - Carbon Fiber 3D Print
- Assembly

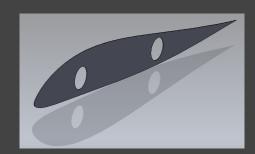
Overview

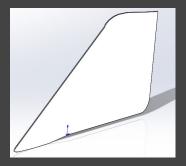
- Nuts, bolts
- EPP foam wings

4-AXIS FOAM CUTTER

Foam Cutting Practice

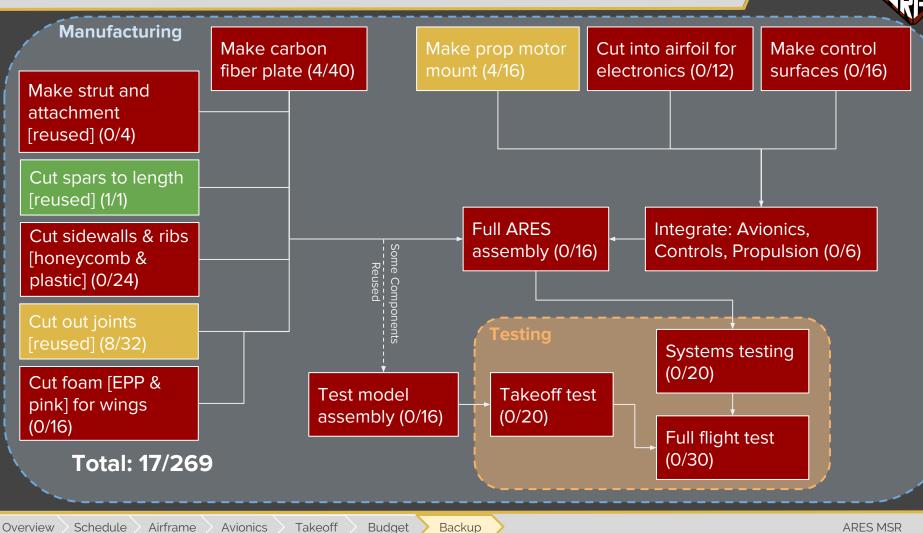
- Learned how to use the foam cutter
- Prototype: Aerodynamic Model
 - Use Pink foam to build an aerodynamic model (No avionics mounted)
- Control Surface Design
 - Manufacturability constraint on the foam cutter (Hinge design is done)
- EPP Foam Cutting
 - EPP foam not yet arrived (on a ship)




SIDE PANELS/RIBS

Carbon Honeycomb not shipped - (Not Yet Arrived)

- expected arrival on March 1st (happy Chinese New Year!)
- Plan: Use alternate material (corrugated plastic panels, poster board) as approximation for launch/ aerodynamic testing
- Cannibalize SCUA for ribs
- Off ramp use alternate material (aluminium, foam core composite) on final project



Material Sample

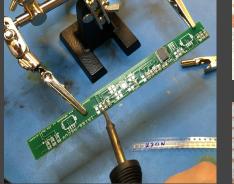
AIRFRAME FLOWCHART

*MAN-HOURS (Complete/Total)

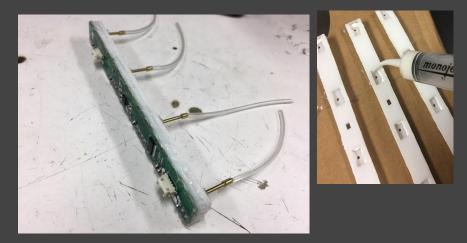
ARES MSR 44

CU BOULDER

AVIONICS BACKUP

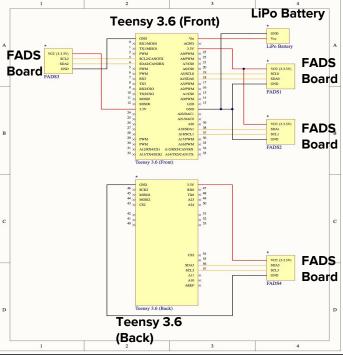

Overview Schedule Airframe Avionics Takeoff Budget Backup

FADS BOARD DESIGN


Surface mount FADS PCBs

- Capacitors and resistors Multiplexers and headers
- Epoxy PCBs
 - Acrylic layers
 - PCB to acrylic
- cheate brass/tubing/board connection
 - Cut brass tubing to length
 - Glue brass fittings to acrylic
 - Cut and insert tubing to brass
- Test voltages to assure connections

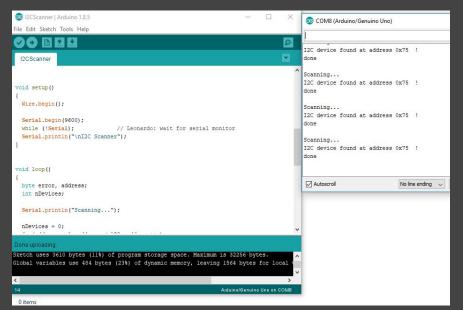
TEENSY/FADS CIRCUIT BOARD

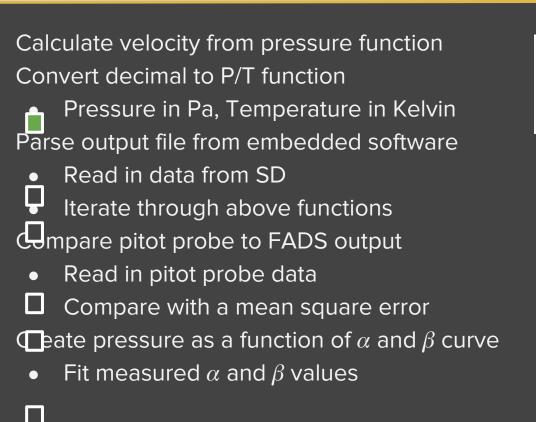

Design Change: learned that pull-up resistors were needed

- Design new circuit board
- Procure vector board, resistors, and wire
 - Cut circuit board to size
- Solder components

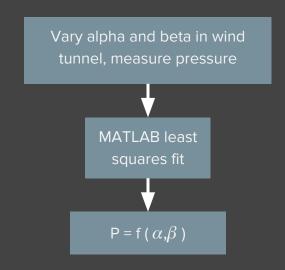
 \bullet

- Test power conditioning circuit
- Solder microcontroller headers to board



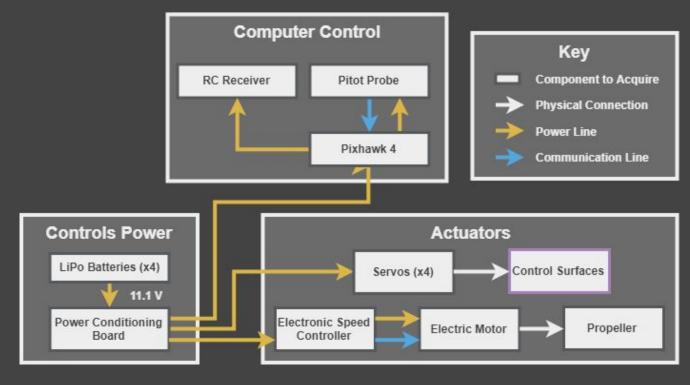

FADS EMBEDDED SOFTWARE

- Build integrated development environment (IDE)
 - Build and compile code on microcontroller
 - Blink program
 - Scan for I2c address
 - Multiplexer and P/T sensors
- Send command register for P/T
 - Decimal values (Challenge step)
- 🖓 ite data to SD card
 - P/T and real time clock (RTC) data
- Ferroduce code for 4 boards



FADS POST-PROCESSING

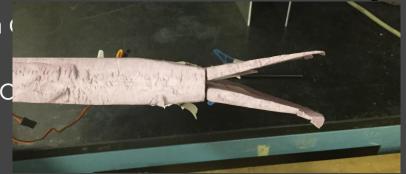
% This function takes in stagnation and static pressure, mean sea level % density and boulder density, and temperature. It gives the indicated % airspeed, the true airspeed and the associated error. © function [P_stag, P_static, rho, rho_0, I] = ARES_CalcTAS(TAS, IAS) R = 287; % J/KgK IAS = sqrt(2*(P_stag - P_static)/rho_0); TAS = IAS*sqrt((rho_0*F_stag)/(R*T)); error = TAS*.003;


end

•

۲

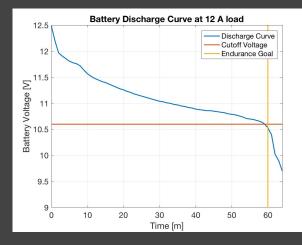
CONTROLS/PROPULSION SCHEMATIC



CU BOULDER

CONTROLS AVIONICS

- Firmware uploading to Pixhawk board from (
- Pixhawk wiring mostly complete ۲
 - Successful pairing between receiver and RC
 - Sensor calibration almost done
- Powered with LiPo battery connection
- Post-flight log files received
 - Wind tunnel test for pitot tube
 - Integrate ESC/Motor


Custom airframe built into firmware for split (

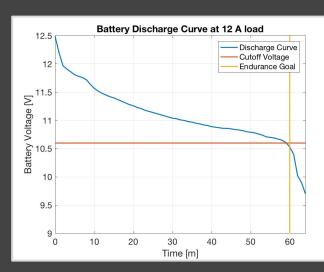
Testing

- Data recording and storage
 Fridge testing (sensor accuracy)
 Wind tunnel testing
 Pressure data comparison
 - Pressure data comparison
 - Pressure-velocity comparison
 - Battery discharging and charging
 - Dynamometer testing
 - Servo perturbation testing

Propulsion Status

- Propulsion mounting structure will be recycled from heritage design (SCUA)
 - Already manufactured
 - Will be cut out from SCUA and simply glued to ARES' center ribbing
 - Current mount doesn't fit our motor will make aluminum adapter

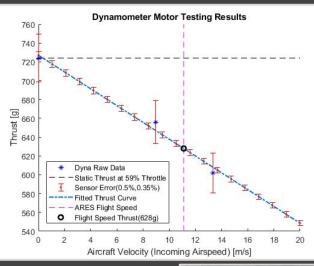
Propulsion Status



- Propulsion system has been completely configured and tested
 - Motor is compatible with ESC, batteries, wiring, etc.
- No further manufacturing required for propulsion in very good standing
- DR 1.2.1 has been met

Battery Discharge Testing

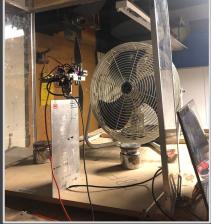
- Ran test with charged batteries to ensure endurance requirement ($V_i = 4.24v$)
- Prop ran for over an hour successfully with 550-720g thrust range
- At the hour mark, changed the thrust output to see its effect on the battery
- FR 1.0 has been met
- Level 1 success criteria conditionally is met


Dynamometer Testing

- Used DBF Dynamometer (0.5% Error)
 - Tested motor for:
 - max thrust output
 - Expected flight thrust output
 - Startup throttle system response
 - Response to incoming wind at varying speeds

akeoff

Budget

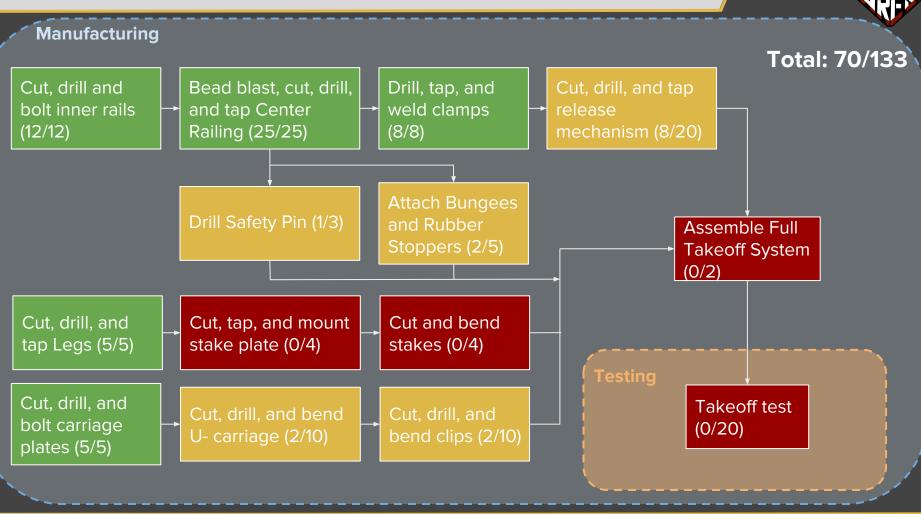


	Throt	Throttle Effects on Thrust Ir			
	Throttle	Thrust	RPM		
	100%	1140g	9234		
	59%	724g	7941		
	9%	32a	294		
C) verview Sche	dule Airframe	e Avionics	Та	

Incoming Wind Speed Effects on Thrust at 59% Throttle

Wind Speed	Thrust	RPM
0m/s	724g	7941
8.98m/s	656g	7483
13.32m/s	602g	7096

Backup



TAKEOFF BACKUP

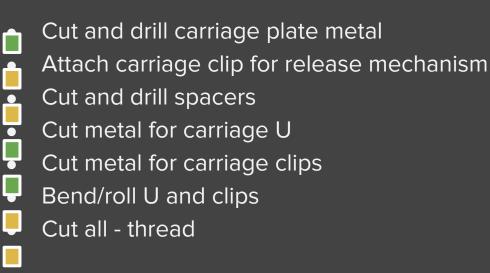
Overview Schedule Airframe Avionics Takeoff Budget Backup

TAKEOFF FLOWCHART

*MAN-HOURS (Complete/Total)

Overview Schedule Airframe Avionics Takeoff Budget Backup

CU BOULDER


Center Rail Status

- Bead blast steel beams
 - Drill holes for legs, support rods, clips, tail post
 - Weld center rail clips
- Cut and drill legs
- Drill and tap tail post
- Cut and drill rubber stoppers
- Drill Safety Pin Hole
- Drill Release mechanism holes

Carriage Status

Release Mechanism Status:

Obtain material for release mechanism Drill and tap L - brackets (if needed) Drill and tap lever arm Drill and tap tube for release

Bungee Status:

- KBand Victory Ropes have been replaced
- Current design is using silicon tubing (budget/size decision)
 - Required displacement of 2m and force of 400 N still met
 - Heritage on X8 Skywalker Launcher
 - Load testing???

To - Do Material Procurement:

- Rebar
- Flight string
- Screws/bolts (to reimburse machine shop)
- L brackets

Summary:

- Center rail
- Legs and Posts
- Release Mechanism
- Carriage
 - Safety Pin

Current Challenges

- Bungee performance
- Release mechanism

To-Do:

- Material procurement
 - Rebar
 - Flight string
 - Screws/bolts (to reimburse machine shop)
 - L brackets
- Finish 'in progress' components

