# ASEN 3728 AIRCRAFT DYNAMICS FALL 2025 SYLLABUS

#### **LECTURE**

Tuesday & Thursday 11:30 am - 12:45 pm AERO 120

#### **INSTRUCTORS**

Professor Morteza Lahijanian
Office: AERO 267

Email: <u>Morteza.Lahijanian@colorado.edu</u>
Office Hours: Wednesday 11:00am-12:00 pm

#### Teaching Assistants and Fellows:

Sebastian Escobar
 Bijan Jourabchi
 YuKang Kong
 Jack Cashen
 Sebastian.Escobar@colorado.edu
 YuKang.Kong@colorado.edu
 Jack.Cashen@colorado.edu

#### Техтвоок

Required: Dynamics of Flight: Stability and Control, Bernard Etkin and Lloyd Reid, John Wiley and Sons. 3rd Ed., 1996

<u>Supplemental:</u> Small Unmanned Aircraft: Theory and Practice, Randal W. Beard and Timothy W. McLain, Princeton University Press, 2012.

<u>Supplemental:</u> Flight Stability and Automatic Control, 2nd Ed., Robert C. Nelson, McGraw-Hill, 1998.

### **PREREQUISITES**

ASEN 2702, 2703, 2004, and APPM 2360 (min grade C-).

### **OVERVIEW**

This course covers the key ideas that enable: (i) an understanding of how aircraft work and tools for quantitative analysis, and (ii) design methods to achieve specified dynamical behavior. Because aircraft exist in many different forms, and new designs continue to be developed, the focus is on the common principles that underlie atmospheric flight, so that a solid basis can be formed for future work in any direction. Concrete treatment of these ideas, tools, and methods is provided through working problems individually and in assigned groups, consisting of analysis, simulation, and design problems, including development of simulation models for two very different vehicles: a quad-copter and a conventional airplane.

In their full expression, aircraft dynamics possess astounding complexity. It is a tribute to the ideas developed by aviation's pioneers that a relatively simple understanding can often be obtained, leading to clear insights and design principles. While these concepts are not inherently difficult, they do lie outside most common experience, and they depend on new nomenclature and strange notation that can seem overwhelming at first. It is only through diligent and careful use of this new language that the underlying simplicity can be grasped and conveyed on exams; mastery of the language of aircraft dynamics is perhaps the most important predictor for success in the course.

The course has been designed to develop a conceptual grasp of the key ideas below, and to demonstrate proficiency in using these concepts to solve problems, construct and validate simulations, and to explain behaviors and results obtained. In particular, engineering reasoning skills using these concepts are stressed in assignment solutions and examinations. The key learning objectives are:

- Vector mechanics
  - Vector representation in coordinate frames
  - o Change of coordinate frame representation (coordinate rotation)
  - o Relative motion, frame derivatives
  - Change of derivative frame: velocity rule
- How aircraft dynamics models are created and what the terms mean
  - 3D rigid body translational model
    - Kinematics
    - Dynamics, external forces
    - Effects of wind
  - 3D rigid body rotational model
    - Kinematics, Euler angle attitude representation
    - Dynamics, Euler moment equations, external moments
  - External forces and moments
    - Aerodynamic effects

- Control effects
- Steady flight conditions, trim states
- How aircraft dynamics models are simulated
  - State space models
  - o Integration
- How dynamical behavior is understood and specified
  - Linearization
  - Decoupling
  - Stability derivatives
  - Modal solutions
  - Stability characterizations
  - Modal specifications
- How feedback control is designed to meet behavioral objectives
  - o Sensor/feedback selection, control structure
  - Effects on mode eigenvalues

#### TEACHING MODALITIES

**Lecture** – Lectures will be in person throughout the semester. All lectures will be automatically recorded and uploaded to the course Canvas page via CU's Classroom Capture system.

#### **COURSE COMPONENTS**

Material and concepts are introduced, and student mastery is evaluated using several mechanisms throughout the course:

**Reading** – The textbook provides the essential basis for the course, including the concepts, terminology, notation, methods, and examples used to convey the course topics. Specific reading assignments will be given covering key sections of the book; some book sections are not covered in the course. Some supplementary material will also be provided. The textbook contains a wealth of information, but the concepts and notation are new to most: some sections need to be read more than once to fully grasp the material.

**Lectures** – These are intended to emphasize key ideas and methods that make the material easier to grasp. They are therefore a counterpart to the reading, not a replacement. The value of lectures is dependent on your participation in them. Passive "watching" will provide little benefit. Active note taking is critical to developing first-hand familiarity with the notation, terminology, and methods, and to gaining comfort in using them. Although lectures will be recorded, this is a poor

substitute for your own lecture notes. Questions are encouraged during lectures and will be prompted often.

**Homework** – Homework problems provide individual practice in solving problems of varying difficulty and sometimes will also involve computing. Collaboration on homework is allowed (copying is not); however, students are encouraged to use homework as a means to ensure their individual mastery of the subject. In-class group problem-solving will allow for considerable collaborative learning opportunities.

**Exams** – These are the primary means of evaluation of your individual grasp of the course material. In-class, written exams are planned for Week 7 and Week 11; the <u>final exam is TBD by the university</u>. Exams will include both conceptual questions and quantitative problems. Precise use of terminology and notation is stressed. The final exam is comprehensive in that it will contain material from the entire course, but emphasis will be placed on the final portion of the course material.

#### LOGISTICS

- 1. Office hours office hours for TFs will be held nominally during the "Study Hall" times Tue./Thu. 5:30-7:00 PM in AERO 114. This is intended to provide ease-of-access to TF help on the weekly assignments, but any questions about course material are welcome. This mode of "supervised learning" can be quite efficient, particularly if students are prepared by attempting the assignments ahead of time and come to the "Study Hall" sessions with questions. Additional office hours with instructors and TFs will also be scheduled. Private meetings with instructors or TA/TFs can also be arranged if needed.
- 2. Email & Piazza questions Students are encouraged to post and discuss questions on Piazza (accessed via Canvas). Instructors actively monitor the discussions on Piazza and post answers or comments if necessary. Students may only email the instructor(s) questions not related to homework. DO NOT expect an immediate response. Any question received by 5 PM should typically receive a response within 24 hours. Questions received after 5 PM may not receive a response until noon two days after. Always include "[ASEN 3728]" in the subject of any emails related to the class (enables efficient search).
- 3. **Attendance** Attendance at all lectures is essential. Students who come to class prepared and participate in discussions typically have a more rewarding experience.
- 4. **Taking your own notes** Firsthand contact with the notation and diagrams is key to understanding the material in this course, and to conveying your understanding on exams. Lectures will be recorded for repeated viewing, to ensure details are not missed. But there is no substitute for taking your own notes.

- 5. Homework Collaboration is permitted on homework. This means you may discuss the means and methods for solving problems and even compare answers, but you are not free to copy solutions from classmates or from Internet resources. The work that you turn in must be your own--copying is not allowed for any assignments. Students who are caught copying homework solutions will be reported for violation of honor code and may incur both academic and non-academic sanctions. Homework is submitted individually through Canvas/Gradescope. Please indicate clearly where each problem begins and ends. (You do not need to use a separate sheet for each problem.) Written work must be neat and readable with adequate spacing and margins. Final answers must be indicated with a box. Very messy work will be returned to you without being graded and a score of zero recorded. Two of the lowest homework scores will be dropped and not count toward the final grade.
- 6. Examinations & Comprehensive Final Exams will be given during the class periods. The final exam is scheduled according to University policy. Any type of collaboration or copying on an exam, or final constitutes cheating and will result in an F for the course. An honor code violation or accusation report will be filed. There will be a statute of limitations on when exam grades can be corrected. Any corrections on exam scores must be made before the next exam, or two weeks after the exam was returned, whichever comes later. The only corrections made after this time period will be for simple addition errors in scoring. Students will be expected to complete both portions during the scheduled course time.
- 7. **Deadlines** Deadlines must be enforced to ensure fairness and to enable timely grading. Late assignments are subject to a 50% penalty per day (e.g., 0-24 hours late = 1 day penalty) except under extenuating circumstances. If such a circumstance occurs you are expected to contact the instructor and TA immediately by email, before the due date. No other accommodations will be provided, e.g., a hectic schedule or crashed computer will not be considered. Please plan for these contingencies by including some margin in your schedule. If you know in advance you will not be able to submit your homework on the day it is due, you may submit your assignment on Gradescope any time prior to the due date. It is your responsibility to manage assignment submissions and deadlines.

#### **GRADING**

#### **Grading Philosophy**

Assignments and exams are graded to an absolute standard designed to indicate your level of competency in the course material. The final grade indicates your readiness to continue to the next level in the curriculum. The AES faculty have set these standards based on our education, experience, interactions with industry, government laboratories, others in academe, and

according to the criteria established by the ABET accreditation board. As with all other standards that you will encounter throughout your professional, these standards are non-negotiable.

The course grade is primarily dependent on individual measures of competency, i.e., exams. The other course assignments are designed to enrich the learning experience and to enhance individual performance, not to substitute for sub-standard individual competency. This policy makes it important to use the assignments to enhance your learning.

Grades for the course are earned set based on the following criteria:

- A, A- Demonstrates mastery of the course material in both conceptual and quantitative aspects.
- B+, B Demonstrates comprehensive understanding of the material, with a solid conceptual grasp of key concepts and strong quantitative work.
- B-, C+ Demonstrates good understanding of most key concepts, with few major quantitative errors.
- C Demonstrates satisfying understanding of the material with sufficient quantitative work.
- C- Demonstrates adequate understanding of the material to proceed to the next level; sufficient quantitative work.
- D Very little understanding is evident, consistently poor quantitative work.
- F Unsatisfactory performance.

In this course, students will be graded on a positive/"value added" system – that is, graders will assess whether responses provided by students reflect knowledge, understanding, and reasoning processes that meaningfully contribute to answering questions posed on assignments. Empty and "fluff" responses, e.g., repeating questions, verbal/buzzword spaghetti throwing, random diagram drawing, etc., are easily seen through and will not suffice. This subject is difficult and non-intuitive, and since this is the first time most (if not all) students have seen this material, it is naturally assumed that all students must work hard and put in effort to learn the concepts. Therefore, hard work is necessary, but not sufficient by itself, to do well. Your effort must translate to demonstrable individual understanding for success.

#### **Grade Breakdown**

Your final grade breakdown is as follows.

| Description              | Percentage     |
|--------------------------|----------------|
| Homework                 | 20%            |
| Mid-term Exams (2 Exams) | 50% (25% Each) |
| Final Exam               | 30%            |
| Total Score              | 100%           |

Note: two of the lowest homework scores will be dropped and will not count towards the final grade.

#### **EXAM SCHEDULE**

The first two exam dates are subject to possible revision to later dates (if needed) during the semester:

Exam 1: Tuesday Sep. 30 11:30 am – 12:45 pm Exam 2: Tuesday Oct. 28 11:30 am – 12:45 pm

Final Exam: TBD by university

#### HOMEWORK SCHEDULE

Homework Assignments will be posted and due on weekly basis. See the end of this document for the full schedule. Homework must be completed individually. The lowest two homework scores will be dropped and not count towards the final grade.

#### **CLASSROOM BEHAVIOR**

Students and faculty are responsible for maintaining an appropriate learning environment in all instructional settings, whether in person, remote, or online. Failure to adhere to such behavioral standards may be subject to discipline. Professional courtesy and sensitivity are especially important with respect to individuals and topics dealing with race, color, national origin, sex, pregnancy, age, disability, creed, religion, sexual orientation, gender identity, gender expression, veteran status, marital status, political affiliation, or political philosophy.

#### Additional classroom behavior information

- Student Classroom and Course-Related Behavior Policy.
- Student Code of Conduct.
- Office of Institutional Equity and Compliance.
- Student Code of Conduct.
- Office of Institutional Equity and Compliance.

ACCOMMODATION FOR DISABILITIES, TEMPORARY MEDICAL CONDITIONS, AND MEDICAL ISOLATION

If you qualify for accommodations because of a disability, please submit your accommodation letter from Disability Services to your faculty member in a timely manner so that your needs can be addressed. Disability Services determines accommodations based on documented disabilities in the academic environment. Information on requesting accommodations is located on the <u>Disability Services website</u>. Contact Disability Services at 303-492-8671 or <u>DSinfo@colorado.edu</u> for further assistance. If you have a temporary medical condition, see <u>Temporary Medical Conditions</u> on the <u>Disability Services website</u>.

If you have a temporary illness, injury or required medical isolation for which you require adjustment, notify your faculty member in a timely manner so that your needs can be addressed.

#### PREFERRED STUDENT NAMES AND PRONOUNS

CU Boulder recognizes that students' legal information does not always align with how they identify. If you wish to have your preferred name (rather than your legal name) and/or your preferred pronouns appear on your instructors' class rosters and in Canvas, visit the <a href="Registrar's website">Registrar's website</a> for instructions on how to change your personal information in university systems.

#### HONOR CODE

All students enrolled in a University of Colorado Boulder course are responsible for knowing and adhering to the <u>Honor Code</u>. Violations of the Honor Code may include but are not limited to: plagiarism (including use of paper writing services or technology such as essay bots), cheating, fabrication, lying, bribery, threat, unauthorized access to academic materials, clicker fraud, submitting the same or similar work in more than one course without permission from all course instructors involved, and aiding academic dishonesty. Understanding the course's syllabus is a vital part of adhering to the Honor Code.

All incidents of academic misconduct will be reported to Student Conduct & Conflict Resolution: <a href="mailto:StudentConduct@colorado.edu">Students found responsible for violating the Honor Code will be assigned resolution outcomes from Student Conduct & Conflict Resolution and will be subject to academic sanctions from the faculty member. Visit <a href="mailto:Honor Code">Honor Code</a> for more information on the academic integrity policy.

# SEXUAL MISCONDUCT, DISCRIMINATION, HARASSMENT AND/OR RELATED RETALIATION

CU Boulder is committed to fostering an inclusive and welcoming learning, working, and living environment. University policy prohibits <u>protected-class</u> discrimination and harassment, sexual misconduct (harassment, exploitation, and assault), intimate partner abuse (dating or domestic violence), stalking, and related retaliation by or against members of our community on- and off-

campus. The Office of Institutional Equity and Compliance (OIEC) addresses these concerns, and individuals who have been subjected to misconduct can contact OIEC at 303-492-2127 or email <a href="OIEC@colorado.edu">OIEC@colorado.edu</a>. Information about university policies, reporting options, and OIEC support resources including confidential services can be found on the OIEC website.

Please know that faculty and graduate instructors are required to inform OIEC when they are made aware of incidents related to these concerns regardless of when or where something occurred. This is to ensure the person impacted receives outreach from OIEC about resolution options and support resources. To learn more about reporting and support a variety of concerns, visit the Don't Ignore It page.

#### ACCOMMODATION FOR RELIGIOUS OBLIGATIONS

Campus policy requires faculty to provide reasonable accommodations for students who, because of religious obligations, have conflicts with scheduled exams, assignments or required attendance. Please communicate the need for a religious accommodation in a timely manner. In this class, inform the instructors of such conflicts at least three weeks in advance.

See the campus policy regarding religious observances for full details.

#### MENTAL HEALTH AND WELLNESS

The University of Colorado Boulder is committed to the well-being of all students. If you are struggling with personal stressors, mental health or substance use concerns that are impacting academic or daily life, please contact <u>Counseling and Psychiatric Services (CAPS)</u> located in C4C or call (303) 492-2277, 24/7.

# **CU COMMUNITY OF CARE**

CU Boulder is committed to a community of care in which students are supported by faculty and staff throughout their college journey. You don't have to face academic challenges alone — CU and the college are here to help you learn and succeed in your coursework and campus life. Part of this community of care is your connection to faculty and staff across campus. Our college promotes and hopes you will connect with faculty or staff who may reach out during your educational journey at CU.

# **COURSE ALERTS**

This course participates in the CU Course Alert process to help connect you with support resources and identify your barriers to success (<a href="colorado.edu/engineering-advising/coursealerts">colorado.edu/engineering-advising/coursealerts</a>). If you receive a course alert for this class, please plan to schedule a meeting with the instructor as soon as possible.

#### ACCEPTABLE USE OF ALIN THIS CLASS

Generative artificial intelligence tools, i.e., software that reproduces text, images, computer code, audio, video, and other content, have become widely available. Well-known examples include ChatGPT for text and DALL•E for images. This statement governs all such tools, including those released during our semester together. Keep in mind that the goal of gen AI tools is to reproduce content that seems to have been produced by a human, not to produce accurate or reliable content; therefore, relying on a gen AI tool may result in your submission of inaccurate content. It is your responsibility, <u>not</u> the tool's, to assure the quality, integrity, and accuracy of work you submit in any college course.

If gen AI tool use is suspected in completing assignments for this course in ways not explicitly authorized, I will follow up with you. I may contact the Office of Student Conduct & Conflict Resolution to report suspected Honor Code violations. In addition, you must be wary of unintentional plagiarism or data fabrication. Please act with integrity, for the sake of both your personal character and your academic record.

This course will participate in a pilot program to develop and deploy a generative AI tool specifically designed and trained for the course content. The tool, called HiTA, will be available to a limited number of students who wish to enroll in this pilot program. However, the participants should be aware that HiTA is still in the development phase and may occasionally generate incorrect responses. <u>Outside of HiTA</u>, you may **NOT** use gen AI tools on any assignments in this course.

# Schedule

The expected course schedule is as follows (some updates and adjustments may occur during course of the semester).

|      |                 | Lectures                                                                                |                                                                               |                                                                            | Assignments |
|------|-----------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------|
| Week | Dates           |                                                                                         | Tuesday                                                                       | Thursday                                                                   | Friday      |
| 1    | 08/19-<br>08/21 | Equations of Motion;<br>Intro to Aircraft Dynamics<br>and Control: Quadrotor<br>Example |                                                                               | Introduction; Nomenclature                                                 | -           |
| 2    | 08/26-<br>08/28 |                                                                                         | Coordinate Frames and<br>Euler Angles (Ch 4.1, 4.4,<br>App. A.4)              | Equations of Motion –<br>Kinematics (Ch. 4.1, 4.4)                         | HW 1 due    |
| 3    | 09/02-<br>09/04 |                                                                                         | Equations of Motion –<br>Dynamics (Ch. 4.2-<br>4.3,4.5,4.7)                   | Quadcopter Dynamics                                                        | HW 2 due    |
| 4    | 09/09-<br>09/11 |                                                                                         | Linearization                                                                 | Quadcopter Modal<br>Solutions                                              | HW 3 due    |
| 5    | 09/16-<br>09/18 |                                                                                         | Quadcopter Stability and<br>Control                                           | Quadcopter Guidance                                                        | HW 4 due    |
| 6    | 09/23-<br>09/25 | Fixed-Wing Aircraft:<br>Longitudinal Stability and<br>Control                           | Longitudinal Forces/Moments (Ch2.1- 2.3)                                      | Longitudinal Trim and Stability (Ch. 2.1-2.4)                              | HW 5 due    |
| 7    | 09/30-<br>10/02 |                                                                                         | Exam 1                                                                        | Longitudinal Stability Derivatives (Ch 5.1-5.5)                            | HW 6 due    |
| 8    | 10/07-<br>10/09 |                                                                                         | Longitudinal Linear Model<br>(Ch. 4.9-4.10)                                   | READING DAY                                                                | HW 7 due    |
| 9    | 10/14-<br>10/16 |                                                                                         | Longitudinal Modes (Ch. 6.2)                                                  | Short Period Approximation (Ch. 6.3)                                       | HW 8 due    |
| 10   | 10/21-<br>10/23 |                                                                                         | Longitudinal Control (Ch. 7.1-7.7)                                            | Lateral Forces and<br>Moments                                              | HW 9 due    |
| 11   | 10/28-<br>10/30 | Fixed-Wing Aircraft:<br>Lateral Stability and<br>Control                                | Exam 2                                                                        | Lateral Stability Derivatives;<br>Yaw Stiffness (Ch. 3.8-3.9;<br>Ch. 4.11) | -           |
| 12   | 11/04-<br>11/06 |                                                                                         | Dihedral Effect (Ch. 3.11-3.12)                                               | Lateral Damping Derivatives                                                | HW 10 due   |
| 13   | 11/11-<br>11/13 |                                                                                         | Lateral Cross Coupling and<br>Side Forces (Ch. 5.6-5.8)                       | Lateral Linear Model<br>(Ch.4.7-4.10)                                      | HW 11 due   |
| 14   | 11/18-<br>11/20 |                                                                                         | Lateral Dynamic Modes<br>(Ch. 6.7)                                            | Lateral Modal<br>Approximations                                            | HW 12 due   |
| 15   | 11/25-<br>11/27 | FALL BREAK                                                                              |                                                                               |                                                                            |             |
| 16   | 12/02-<br>12/04 |                                                                                         | Lateral Control Derivatives;<br>State and Stability<br>Augmentation (Ch. 6.8) | Aircraft Handling Qualities and Control Design Criteria                    | -           |
|      | 12/08-<br>12/12 | Final Exam: Date/Time TBD                                                               |                                                                               |                                                                            |             |