ASEN 5050 Space Flight Mechanics T Th 13:00-14:15 in AERO 111

Instructor: Daniel Scheeres, <u>scheeres@colorado.edu</u>

AERO 454

Office Hours T Th 14:15-15:00

TA: Ananya Kodukula <u>anko2531@colorado.edu</u>

Office Hours

M 11:00-12:30 W 15:00-16:30

Introduction to astrodynamics at the graduate level. General solution of the 2-body problem. Orbital trajectories, transfers, targeting, and time of flight. Orbit perturbations and averaging analysis. Restricted 3-body problem.

Pre-requisite: Undergraduate orbital mechanics course (equivalent to ASEN 3700), graduate standing, or permission of the instructor.

Coursepack:

Selected excerpts from "Orbital Motion in Strongly Perturbed Environments," selected papers and notes will be distributed.

Textbook:

A.E. Roy, Orbital Motion 4th edition, Institute of Physics Publishing, 2005. *This text is available for download on the CU Library page.*

Additional Reference Books:

D.J. Scheeres. "Orbital Motion in Strongly Perturbed Environments: Applications to Asteroid, Comet and Planetary Satellite Orbiters," Springer-Praxis Books in Astronautical Engineering. 2012. ISBN 978-3-642-03255-4, e-ISBN 978-3-642-03256-1, DOI 10.1007/978-3-642-03256-1

J.E. Prussing and B.A. Conway, Orbital Mechanics, 2nd Ed., Oxford University Press, 2012.

J.M.A. Danby, Fundamentals of Celestial Mechanics, 2nd Ed., Willmann-Bell, 1992.

Computing:

Use of Matlab/Python (or other computer languages) in homework.

Homework Communications:

Homework and computational homework problems should be written as informal reports. They should be submitted as a single, combined PDF file. All HW will be due at midnight on Wednesday of the appropriate week. There will be, on average, 1 assignment every 2 weeks.

Grading:

HW problems:	20%
Computational problems:	20%
Mid-term exam (date TBD, early/mid November):	30%
Final exam (Tuesday, December 9, 4:30-7:00 PM):	30%

Topics:

Principles of orbital mechanics.

Orbital trajectories, transfers, time of flight.

Trajectory propagation and targeting.

Orbit perturbation formulation and analysis.

Restricted 3-body problem with applications.

Syllabus:

Orbital mechanics (AE Roy: Chapter 4)

Formulation of two-body, three-body and n-body problems

The two-body problem solution

Elliptical and circular orbits

Parabolic and hyperbolic trajectories

3-D trajectories and orbit elements

Time of flight and orbit propagation

Orbital transfers (AE Roy: Chapter 12)

Impulsive maneuvers

Lambert's theorem

3-D Targeting

Fuel optimal considerations

Orbit perturbation formulations (AE Roy: Chapters 7 and 8)

Variation of constants

Lagrange's Equations

Gauss' Equations

Mean elements and averaging

Orbit perturbation analysis (AE Roy: Chapter 11)

Effect of non-spherical gravity fields

Low-thrust trajectories

Atmospheric drag

Tidal and third body effects

Restricted 3-body problem with applications (AE Roy: Chapter 5)

Derivation of equations of motion

Jacobi Integral, Zero-Velocity Curves, and Lagrange Points

Hill approximation

Numerical computation and analysis of orbits