

Project Manager: Bryce Loging
Systems Engineer: Jesús
E. Meléndez Gil
Advised by: Dr. James Nabity

Smead Aerospace Engineering Sciences Dept. October 14th, 2024

- Project Intro and Organization
- Project Overview
- Fall Deliverables
- Progress
- Project Status

Meet the team

Project Manager Bryce Loging Bioastronautics MS Student

<u>Testing Lead</u> Senaa Mirza Bioastronautics MS Student

Systems Engineer Jesús E Melendez Gil Chemical Engineering PhD Student

DAQ Lead Steven Liu Autonomous systems MS Student

Deputy Project Manager Marjorie Trahan Bioastronautics MS Student

Mechanical Lead Zoë Major Fluids, Structures & Materials MS Student

Organization \rightarrow Overview \rightarrow Deliverables \rightarrow Progress \rightarrow Status

CERES Spring 2024 Project Team

Project Advisement Breakdown

Project Sponsor and Customer:

 Boeing Advanced Exploratory/Environmental Control and Life Support (ECLS) Group

Project Sponsor and Customer:

- Boeing Exploratory/ECLS Group
- CU Boulder Ann and H.J. Smead Aerospace Engineering Sciences Department

Faculty Advisor:

• Dr. James Nabity – CU Bioastronautics

CO₂ Environmental Removal for Extended-duration Spaceflight

6

* Ref: HSMAD 2nd. Edition

Scope Fall 2024:

- Develop and test a low power CO₂ removal system
- Focus on a **desorption system** with **lonic Liquid**

<u> Plan Fall 2024:</u>

- Assemble and Test the CO2 desorber prototype
- Characterize and optimize the CO2 desorption system

Project requirements

- Closed loop (consumables, ^ regenerative capabilities)
- No zeolites or amines
- 4 Crew members $@ > 1 \text{ mm Hg pp CO}_2$
- <= 100 W Power Consumption</p>
- 3 years operability w/o performance degradation

Project Milestones

Subsystem Testing • Oct. 13th thru Nov. 24th

Boeing TRR ٠ Oct. 29th

Full System Integration and • Testing Oct. 20th onwards

Major Project Deliverables

Deliverable	Receiver	Due Date
Quad Charts/Sponsor Meeting	Boeing	Weekly
Project Charter	C. Koehler	09/16/24
Mid-Semester Presentation	C. Koehler	10/14/24
Test Readiness Review (TRR)	Boeing	10/29/24
ICES Abstract	ICES	11/14/24
Final Video	C. Koehler	12/12/24

Status

Organization - Overview - Deliverables - Progress -

10

Smead Aerospace

Fall 2024 Progress

Organization - Overview - Deliverables - Progress - Status

18

Mechanical Concerns and Solutions

Concern	Proposed Solution	Progress
Fitting Leaks	-Increase quantity of Teflon tape-Tighten fittings	Completed Retesting in-progress
IL Overflow in Desorber Channels	-Mill out ½ of existing channels	Waiting to see if necessary
Excess Pooling at Desorber Outlet	-Add chamfers to outlet ports to encourage flow	Planned to occur by 10/28
IL Entering the Vacuum Pump	-Add a hydrophobic membrane to maintain gas headspace	Found Membrane Waiting on Procurement
Potential of Damaging Absorber	-Generate Standard Operating Procedures (SOP) for install and wetting	Complete

PHASE I: SYSTEM VERIFICATION Material & Surface **Functionality &** Sensor Verification **Endurance Testing Performance Testing** Analysis -----Liquid Flow Tests CO2 Sensor Check Contact Angle Test Endurance Leak Test TC & US Heat TC Sensor Check Material Compatibility **Degradation Test** Transfer Test CO2 Airflow Test

Data Acquisition

- Integrated LabVIEW software and National Instruments DAQ hardware
- Characterize CO2 removal using flow meters, CO2 sensors and gas analyzer, pressure, temperature/humidity
- Thermocouples in IL to • characterise heat transfer

Status

Organization - Overview - Deliverables -

Progress

Sensor/ Equipment	Purpose	
Type K thermocouples	Measures IL temperature	
Pressure transducers	Characterize gas flow	
Temperature/Humidity sensors	Characterize gas flow	
Flow meters	Characterize gas flow	
CO2 sensors	Measures CO2 removal capability	
O2 sensors	Fault detection/unforeseen interactions	

Concerns/Significant Challenges

Challenges:

- Team Member Training/Onboarding
- Lab Space Scheduling
- Testing Time Allocation
- Team Communication

Concerns:

- Insufficient System Performance
- Component Faults During Testing

Project Status / Next Steps

Fall 2024:

- Submission of ICES Abstract
- Ultrasonic Desorption Testing
- Boeing TRR
- Full System Test Campaign Kickoff

Spring 2024:

- Writing/Submission of ICES Paper
- Alternative Desorption Testing (Microwaves etc.)
- Full Characterization of CERES Assembly

Thank You!

Any Questions/Comments?

Email bryce.loging@colorado.edu for any questions or interest!