Superconductivity - Basic Phenomena

- Many metals superconduct below a critical temperature (T_c).

- T_c ranges from \sim mK to \sim 100 K. For elemental metals often $T_c \sim$ a few Kelvin (e.g. Pb, Al, ...)

- T - H phase diagram ("Type I" superconductors)

 \[H_c(T) \]
 \[\text{Normal metal} \]
 \[SC \]

 \[T_c \sim \text{7 K (Pb)} \]
 \[\sim \text{1 K (Al)} \]

 $L \rightarrow$ e.g. Pb, Al

 $H_c(T=0) \sim 800$ gauss (Pb)
 \[\sim 100 \] (Al)

- Apply field destroys superconductivity.
\[M \text{eisser effect } \rightarrow \text{ expulsion of B-field} \]

\[B \]

\[T > T_c \quad \text{cooling} \rightarrow T < T_c \]

\[\text{Not same as } "\text{perfect conductivity}," \text{ that is a bunch of particles move } \frac{\partial J}{\partial t} \propto B. \text{ In a true } "\text{perfect conductor}," \text{ flux is not expelled.} \]

\[\text{Perfect diamagnetism: } \quad \vec{B} = \vec{H} + 4\pi \vec{M} \quad \vec{M} = -\frac{\vec{H}}{4\pi} \text{ in SC state} \]

\[M \]

\[\text{slope } - \frac{1}{4\pi} \]

\[\Rightarrow \vec{B} = 0 \]
"Type II" Superconductors. E.g. Cuprate high-T_c superconductors. Nb$_3$Sn, ...

\[H \]

\[H_{c1} \]

"Mixed State"

\[B \neq 0 \]

Meissner \(B = 0 \)

\[\rightarrow T \]

Normal metal

Here field penetrates in discrete flux lines (Abrikosov vortices), each with \(\Phi_0 = \frac{h}{2e} \) flux.

\[\rightarrow \text{Flux quantization.} \]

\(\text{Nb, Sn: } T_c \sim 18 \text{ K, } H_{c1} \sim 0.02 \text{ T, } H_{c2} \sim 24.5 \text{ T} \)

\[B \]

\[\rightarrow H \]

\[H_{c1}, H_{c2} \]

\[\text{Superconducting.} \]

Large!
Isotope Effect:

Roughly, $T_c \sim \frac{1}{\sqrt{M}}$, where M is isotope mass.

→ Evidence that phonons are important.

Heat Capacity:

- In metal $C(T) = C_{el}(T) + C_{ph}(T) = \gamma T = CT^3$

Superconductor:

- Exponential decay $\sim e^{-A/\kappa T}$

"energy gap"
Other probes of energy gap:

Normal - SC tunneling

\[V = \frac{\Delta}{e} \]