1. In class, we considered a model for phonons in a simple cubic lattice, with the Hamiltonian

\[H = \frac{1}{2M} \sum_k p(k) \cdot p(-k) + \frac{K}{2} \sum_k f(k) u(k) \cdot u(-k). \]

(1)

Here, the sums over \(k \) range over the Brillouin zone of the cubic lattice, and \(f(k) = 6 - 2[\cos(k_x a) + \cos(k_y a) + \cos(k_z a)] \). The Fourier components of the ion positions and momenta satisfy the commutation relations

\[[u_i(k), p_j(k')] = i\hbar \delta_{ij} \delta_{k,-k'}, \]

(2)

and, because \(u(k) \) and \(p(k) \) are Fourier transforms of real-valued variables, we also have

\[u(-k) = [u(k)]^\dag, \]
\[p(-k) = [p(k)]^\dag. \]

(3)

(4)

By writing \(u(k) \) and \(p(k) \) in terms of their real and imaginary parts, show that \(H \) can be written as a sum of decoupled harmonic oscillators. That is, show that \(H \) can be put in the form

\[H = \sum_i \left[\frac{1}{2m_i} p_i^2 + \frac{1}{2}m\omega_i^2 q_i^2 \right], \]

(5)

where \(q_i \) and \(p_i \) are Hermitian operators, and \([q_i, p_j] = i\hbar \delta_{ij}\). Note that, here, \(i \) is a label that distinguishes the various different harmonic oscillators. **Hint:** You will want to work out the implications of Eq. (3) and Eq. (4) for the real and imaginary parts of \(u \) and \(p \).

2. Consider the cubic lattice Hamiltonian from class, but with an extra term added:

\[H = \frac{1}{2M} \sum_R \left[p(R) \right]^2 + \frac{K}{2} \sum_{RR'} \left[u(R) - u(R') \right]^2 + \frac{V}{2} \sum_R \left[u(R) \right]^2. \]

(6)

What is the physical meaning of the last term? Could it occur in a real crystal? Solve for the phonon frequency \(\omega(k) \). What happens to \(\omega(k) \) at small \(|k| \)? Give a physical interpretation of this result.

3. In this problem, we will show that the zero- and one-phonon contributions to \(S(q, \omega) \) calculated in class really do correspond to processes where a neutron emits/absorbs zero and one phonons, respectively. For simplicity, we focus on the case of zero temperature, where the initial state in the scattering process is \(|i\rangle = |0\rangle \). The starting point is the expression

\[S(q, \omega) = \frac{1}{N} \sum_f \int \frac{dt}{2\pi} e^{i\omega t} \sum_{R, R'} e^{-iq \cdot (R-R')} \langle 0|e^{iq \cdot u(R')}|f\rangle \langle f|e^{-iq \cdot u(R, t)}|0\rangle. \]

(7)

(a) Zero-phonon processes correspond to the single final state \(|f\rangle = |0\rangle \). Starting from Eq. (7), evaluate \(S(q, \omega) \) for a zero-phonon process, and show that it reduces to the same expression we obtained in class. That is, show

\[S_0(q, \omega) = e^{-2W} \int \frac{dt}{2\pi} e^{i\omega t} \sum_R e^{-iq \cdot R}. \]

(8)
(b) Single-phonon processes correspond to

\[|f\rangle = a_i^\dagger(k)|0\rangle, \]

and

\[\sum_f \rightarrow \sum_{k,i}. \]

This corresponds to the neutron emitting a phonon. (At zero temperature, the neutron cannot absorb a phonon, and such processes are not included.) Again, starting from Eq. (7), evaluate \(S(q, \omega) \) by summing over all single-phonon processes, and show that it reduces to the form obtained in class (for zero temperature). That is, show

\[S_1(q, \omega) = e^{-2W} \int \frac{dt}{2\pi} e^{i\omega t} \sum_R e^{-iq\cdot R} \langle 0|q\cdot u(0)||q\cdot u(R, t)||0\rangle. \]

\[\]

\textit{Hint.} You will find the following identity helpful in evaluating the object \(\langle 0|a_i(k)e^{-iq\cdot u(R, t)}|0\rangle \). Suppose \(a \) and \(a^\dagger \) are the lowering/raising operators for a single harmonic oscillator. Then

\[[a, f(a^\dagger)] = f'(a^\dagger). \]

\[\]