Tight-Binding Band Structure

- Consider opposite limit from nearly free electrons
 \[\rightarrow \text{very strong potential } U(r) \]
- We will give a very heuristic treatment; a more systematic discussion is given in A& M Ch. 10.

Almost localized state tunnels from one potential well to the next, tunneling matrix element t.
For simplicity, start with only a single localized state at each lattice site \[\hat{R}, \vert \hat{R} \rangle \].

- Crucial assumption: \[\langle \hat{R} \vert \hat{R}' \rangle = 0 \] if \(\hat{R} \neq \hat{R}' \).

- In reality, these states are non-orthogonal — we can take this into account, but it doesn’t change the structure of the resulting model significantly. Anyway, it turns out deep (for apart), the overlap is exponentially small. See A&M Ch. 10 for more careful discussion.

- However, the Hamiltonian induces transitions between these states, \(\langle \hat{R}' \vert \hat{H} \vert \hat{R} \rangle = -t \), if \(\hat{R} \) and \(\hat{R}' \) are nearest neighbors.

\[
\hat{H}_{\text{eff}} = -t \sum_{\hat{R}, \hat{R}'} \left[\langle \hat{R} \vert \hat{R}' \rangle + \langle \hat{R}' \vert \hat{R} \rangle \right]
\]

\[\text{sum over nearest-neighbor pairs} \]
We usually write such Hamiltonians using 2nd quantization.

- Let $\mathbf{C}_{\mathbf{R}_0}^+$ create electron at \mathbf{R} with spin σ.

Then...

$$\text{Heff} = -t \sum_{\mathbf{R}, \mathbf{R}'} \left[\mathbf{C}_{\mathbf{R}_0}^+ \mathbf{C}_{\mathbf{R}'\sigma} + \mathbf{C}_{\mathbf{R}'\sigma}^+ \mathbf{C}_{\mathbf{R}_0} \right]$$

Q: Where do these localized states come from more physically?
A: They're atomic orbitals.

Example: Na atoms form BCC lattice.

Each Na atom has [Ne]3s1 configuration.

- $\mathbf{C}_{\mathbf{R}_0}^+$ creates s-state orbital at site \mathbf{R}.
Another example: Cuprates, e.g. \(\text{La}_2\text{CuO}_4 \)

- Important part is \(\text{CuO}_2 \) layers
 \[
 \begin{array}{ccc}
 \text{Cu} & \times & \text{Cu} \\
 \times & \text{O} & \times \\
 \text{Cu} & \times & \text{Cu}
 \end{array}
 \]

- \(\text{Cu} \) is \(\text{Cu}^{2+} \rightarrow 3d^9 \) configuration
- \(\text{O} \) is \(\text{O}^{2-} \rightarrow 2p^6 \)

- For each \(\text{Cu} \), important orbital is \(d_{x^2-y^2} \)

- For each \(\text{O} \), it's either \(p_x \) or \(p_y \):

- [Diagram of \(d_{x^2-y^2} \) orbital]
- [Diagram of \(p_x \) or \(p_y \) orbitals]
Let:
\[\text{C}^+_{2s} \] create electron in Cu \(d_{x^2-y^2} \)

Let:
\[d^+_R \] create electron in O \(p_x / p_y \)

\[\text{Then:} \quad H_{TB} = \sum_R \left[\varepsilon_d \text{C}^+_{2s} C_{2s} + \varepsilon_p \sum_{i=x,y} d^+_R \right] \]
\[- t_{pd} \sum_R \left[\left(\text{C}^+_{2s} d_R, \sigma + H.c. \right) + \ldots \right] \]

For compounds, \(\varepsilon_d - \varepsilon_p \sim 2 \text{ eV} \)
\(t_{pd} \sim 1 \text{ eV} \)
How to solve tight-binding band structures?

(i.e. what's $E_n(k)$?)

Simple example: Square lattice

$$H = -t \sum_{R} \left[C_{R\sigma}^+ C_{R+\hat{x},\sigma} + C_{R+\hat{x},\sigma}^+ C_{R\sigma} + C_{R\sigma}^+ C_{R+\hat{y},\sigma} + C_{R+\hat{y},\sigma}^+ C_{R\sigma} \right]$$

Let's Fourier transform:

$$C_{R\sigma} = \frac{1}{\sqrt{N_c}} \sum_{k} e^{i k \cdot R} C_{k\sigma}; \quad C_{k\sigma} = \frac{1}{\sqrt{N_c}} \sum_{R} e^{-i k \cdot R} C_{R\sigma}$$

Check: $\{ C_{R\sigma}, C_{R'\sigma}^+ \} = \delta_{RR'} \delta_{\sigma\sigma'}$

Result:

$$H = \sum_{k} \left[-2t \left(\cos(k_x) + \cos(k_y) \right) \right] C_{k\sigma}^+ C_{k\sigma}$$
One electron per site:

\[\epsilon_F = 0 \]

"Diamond shaped" Fermi surface

This diamond shape is pathological, if you add diagonal hopping.

\[t' \]
One last example: graphene.

- Carbon atoms, with an \(2s^2 2p^2\), form honeycomb lattice.

\[\text{\(s^2\) orbitals, "\(\sigma\) bonding"} \]

\[\text{Also "\(\pi\)" orbital, \(\perp\) to plane} \]

- \(\pi\)-bonding orbitals are like core bands, filled with pairs of electrons, one from each C-atom. \(\rightarrow\) inert

- But the \(\pi\)-orbital has only single electron per atom.

- Call honeycomb sites \(r\), let \(C^\dagger_{r\sigma}\) create electron in \(\sigma\) for orbital. Then:

\[
H_{1B} = -t \sum_{r,\sigma} \left[C_{r\sigma}^\dagger C_{r\sigma} + C_{r\sigma}^\dagger C_{r\sigma} \right]
\]