1) Consider the Hamiltonian for a quantum mechanical pendulum

\[H = -\frac{\hbar^2}{2ml^2} \frac{\partial^2}{\partial \theta^2} + mgl(1 - \cos(\theta)) \]

in perturbation theory. Find the energies of all the states of the pendulum assuming that the problem is mostly a harmonic oscillator, and the \(\theta^4 \) term in the expansion of the cosine is the perturbation. **Hint:** It is easier to do this problem if you use the creation/annihilation operators of the harmonic oscillator, \(x = \sqrt{\hbar/2m\omega}(a + a^\dagger) \)

2) a) Start with Griffiths 6.35a - you don’t have to derive the Kramer’s formula, just obtain the expectations values.

b) Now repeat the problem from last week with the perturbing potential \(H_1 = \sigma r \) but calculate the first order energy correction for all states, not only the ground state. The interesting thing here is the dependence on the angular momentum quantum number \(l \).

3) Griffith 6.36

4) Consider the 3 state system described by the Hamiltonian

\[
H = \begin{pmatrix}
\epsilon_1 & c & 0 \\
c^* & \epsilon_1 & d \\
0 & d^* & \epsilon_2
\end{pmatrix}
\]

where \(c, d \ll \epsilon_{1,2} \). Treating \(c, d \) as perturbation, calculate the the energy at first order in perturbation theory. Find the correct 0th order eigenkets as well. Compare your perturbative result for the energy with the exact one.