Homework 2

(Due Date: Wed, Jan 28, in class. Recall: late homework will not be accepted)

NOTE: Be sure to show your work and explain what you are doing

1. Consider a system composed of two spin 1/2 particles whose orbital variables are ignored, with Hamiltonian
 \(\hat{H} = \omega_1 \hat{S}_1z + \omega_2 \hat{S}_2z \). Suppose the initial state of the system at time \(t = 0 \) is
 \(|\psi(0)\rangle = (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)/\sqrt{2} \). If \(\hat{S}^2 = (\hat{S}_1 + \hat{S}_2)^2 \) is measured at time \(t \), what results can be found and with what probabilities? (30 pts)

2. A system of three nonidentical particles of spin 1/2 whose spin operators are \(\hat{S}_1, \hat{S}_2, \hat{S}_3 \) is governed by the Hamiltonian
 \[
 \hat{H} = A\hat{S}_1 \cdot \hat{S}_2 + B(\hat{S}_1 + \hat{S}_2) \cdot \hat{S}_3
 \]
 Find the energy levels and their quantum numbers and degeneracies. (30 pts)

3. The total angular momentum of the hydrogen atom is \(\hat{F} = \hat{J} + \hat{I} \), where \(\hat{I} \) is the nuclear spin and \(\hat{J} = \hat{L} + \hat{S} \) is the total angular momentum. The eigenvalues of \(\hat{L}^2, \hat{J}^2, \hat{S}^2, \hat{I}^2 \) and \(\hat{F}^2 \) are \(\hbar^2 l(l+1) \), \(\hbar^2 J(J+1) \), \(\hbar^2 S(S+1) \), \(\hbar^2 I(I+1) \) and \(\hbar^2 F(F+1) \) respectively. For the hydrogen atom, \(I = S = 1/2 \). Assuming that the atom is in an fixed \(nl \) state, with \(n = 3 \) and \(l = 2 \) (30 pts: 15+15)

 (a) What are the possible values of the quantum number \(J \) and the corresponding degeneracies

 (b) What are the possible values of the quantum number \(F \) and the corresponding degeneracies