Physics 4410 Homework #1
Due Wednesday, Sept. 3, IN CLASS. Recall: late homework will not be accepted.
Be sure to show your work and explain what you are doing.

1) (10 points) Return to the analogy made in class, between a spin-1/2 system and the polarization of a beam of light.
 a) Suppose light is polarized by passing it through a linear polarizer that is vertically oriented. Call the intensity of this polarized light I. Now pass this light through a linear polarizer that is rotated 45° with respect to the vertical. What is the intensity of the light that passes through the second polarizer, in terms of I?
 b) Suppose you pass some spin-1/2 atoms through a Stern-Gerlach (SG) apparatus, and select those atoms that are spin-up according to a z-axis in the laboratory. Call the flux of this beam F. You then pass this beam through a second SG apparatus whose axis is along the x-axis in the laboratory. If you select the atoms that are spin-up relative to the x-axis, what is the flux of this beam, in terms of F?

2) (10 points) Suppose you have a Stern-Gerlach apparatus that is initially oriented along the z-axis, so that a beam of incident atoms is separated into two distinct beams with the quantum numbers $|\uparrow>_z$ and $|\downarrow>_z$, representing the usual spin-up and spin-down with respect to the z-axis. Now rotate the apparatus in the x-z plane so that it makes an angle θ with respect to the z-axis.
 a) Write down the spin operator that describes this apparatus. In the basis of states $|\uparrow>_z$ and $|\downarrow>_z$, what is the matrix of this operator?
 b) What are the eigenstates of the operator in part a? Show that they reduce to $|\uparrow>_z$ and $|\downarrow>_z$ in the limit $\theta \to 0$. (Hint: L’Hospital’s rule for taking limits may be useful).

3) (20 points) A spin-1/2 atom is initially in an eigenstate of S_x with eigenvalue $+\hbar/2$ at time $t = 0$. At that time a field $\vec{B} = B\hat{z}$ is turned on, after which the spin precesses for a time T. At $t = T$ the field is suddenly rotated to $\vec{B} = B\hat{y}$ and the atom is allowed to precess for an additional time T. After all this, at time $t = 2T$, a measurement is made of S_x. What is the probability that the measured value is $+\hbar/2$, i.e., right back where the spin started?