Heat Engines

\[\Delta S_{\text{sys}} = \frac{Q}{T} \]

Recall origin of \(\Delta S = \frac{Q}{T} \):

Definition of \(T \):
\[\frac{1}{T} = \left. \frac{\partial S}{\partial u} \right|_{N,V} \Rightarrow \Delta S = \left. \frac{\Delta u}{T} \right|_{V,N} \]

At \(\text{const } V, \ W = 0 \), \(\Delta u = Q \Rightarrow \Delta S = \frac{Q}{T} \)

Even if \(V \neq \text{const} \), if process is quasi-static so that \(W = -p \, dV \), then still true that \(\Delta S = \frac{Q}{T} \)

Why? \(\Delta u = Q + W \) (1st Law)

\[dU = T \, dS - p \, dV \]

follows from \(dS = \left. \frac{\partial S}{\partial u} \right|_{N,V} \, du + \left. \frac{\partial S}{\partial V} \right|_{u,N} \, dV \)

plus def'n of \(T \) and \(p \):

\[\frac{1}{T} = \left. \frac{\partial S}{\partial u} \right|_{N,V}, \quad p = T \left(\frac{\partial S}{\partial V} \right)_{u,N} \]
\[\Delta U = Q + W \]

\[dU = Tds - pdV \]

if process is quasi-static, \(W = -pdV \)

(if not quasi-static, \(P_{\text{from outside}} \neq P_{\text{from inside}} \)

\[\Rightarrow p \text{ not well defined} \]

\[W = -pdV \Rightarrow Q = Tds \Rightarrow \]

\[\Delta S = \frac{Q}{T} \]

(for any quasi-static process)

Note: always possible to create new entropy w/ non-reversible process, such as free expansion. So, in general,

\[\Delta S \geq \frac{Q}{T} \]

(= for reversible processes only)

Heat engine: device that converts heat into work.

Examples: steam turbine, internal combustion engine

Almost all our electricity comes from heat engines. Both coal-burning and nuclear power plants use steam turbines.
efficiency \(e = \frac{W}{Q_h} \)

\(Q_h = W + Q_c \) (1st law)

\[\Rightarrow e = \frac{Q_h - Q_c}{Q_h} = 1 - \frac{Q_c}{Q_h} \]

Per cycle, \(\Delta S_{\text{engine}} = 0 \), since returns to original state

Entropy leaving hot reservoir \(|\Delta S_h| = \frac{Q_h}{T_h} \)

Entropy entering cold reservoir \(\Delta S_c = \frac{Q_c}{T_c} \)
\[\Delta S_{universe} = \Delta S_{hi-T} + \Delta S_{engine} + \Delta S_{low-T} \]

\[= \frac{Q_c}{T_c} - \frac{Q_h}{T_n} \geq 0 \quad \text{2nd Law} \]

\[\frac{Q_c}{T_c} \geq \frac{Q_h}{T_n} , \quad \frac{Q_c}{Q_h} \geq \frac{T_c}{T_n} \]

\[\Rightarrow e = 1 - \frac{Q_c}{Q_h} \leq 1 - \frac{T_c}{T_n} \]

Note \(T_c, T_n \) are temps of reservoirs, not engines. To get high \(e \), need \(T_c \ll T_n \).

Most efficient (but least practical) engine is \textit{Carnot Cycle engine}.

No new entropy generated, every step reversible.
Refrigerator = heat engine run in reverse

\[W, Q_h, Q_c > 0 \] (in directions shown)

1st Law: \[W + Q_c = Q_h \] (per cycle)

Coefficient of performance,

\[\text{COP} = \frac{\text{benefit}}{\text{cost}} = \frac{Q_c}{W} \]

\[\text{COP} = \frac{Q_c}{W} = \frac{Q_c}{Q_h - Q_c} = \frac{1}{\left(\frac{Q_h}{Q_c} - 1\right)} \]

\[\Delta S_{\text{universe}} = + \frac{Q_h}{T_h} - \frac{Q_c}{T_c} \geq 0 \]

2nd Law

\[s_{\text{gained}} \leq s_{\text{lost by}} \]

by hot res. cold res.

\[\frac{Q_h}{Q_c} \geq \frac{T_h}{T_c} \Rightarrow \text{COP} \leq \frac{1}{\left(\frac{T_h}{T_c} - 1\right)} \]

Kitchen fridge: \[T_h \approx 293K \]
\[T_c \approx 263K \]

\[\text{COP} = \frac{1}{\frac{293}{263} - 1} \leq 9 \]

\[\Rightarrow 1 \text{ J of electrical energy in} \]
\[9 \text{ J of heat pumped from interior} \]
\[(9+1) \text{ J of heat pumped into room} \]