1. Schroeder Problem 2.8.

2. Schroeder Problem 2.10.

4. Schroeder Problem 2.22.

5. Quantum harmonic oscillator.

 (a) Find the entropy $S(q,N)$ of a set of N oscillators of frequency f (Einstein solid) as a function of the total quantum number q. Use the multiplicity function (Equation 2.9 in Schroeder), make the Stirling approximation $\ln N! = N \ln N - N$, and replace $N-1$ by N. Treat the general case (don’t assume $q << N$ or $q >> N$).

 (b) Let U denote the total energy qhf of the system of oscillators, where h is Planck’s constant. Express the entropy as $S(U,N)$. Show that the total energy at temperature T is

 $$U = \frac{N hf}{\exp(hf/kT) - 1}$$

 This is the Planck blackbody radiation spectrum.