Physics 3330 Lecture 61 16 Sept 2003

Questions?

Extra lecture this Jan
off the Chaise

Attendance during lab "official" time
is mandatory. If there is a persisting
problem, attendance will be taken

- OP AMPS

 IDEAL AMPLIFIER →

 1) Doesn't Distort input

 2) Doesn't Distort output

 Quite hard for all possible frequencies
 But easy for a restricted range.

We will eventually build amplifiers
directly from transistors, but as these
can be touchy, we will use a more
reliable and easy-to-use product
called an "OP-AMP" (operational amplifier)
to learn about simple amp concepts
such as negative and positive feedback.

As before, we'll consider "ideal"
OP-AMP, then develop realistic model.
 Symbol \(v_+ + v_\text{offset} \) often omitted

\(v_+ \rightarrow v_0 \)

\(v_- \rightarrow v_0 \)

\(v_0 = A(v_+ - v_-) \)

\(A = "\text{open loop gain}" \) (not in a feedback loop)

\(A \approx 10^5 \)

Note components are rarely exact and often temperature dependent. In specs \(\Rightarrow \) circuit must take this into account.

\(v_+ \) and \(v_- \) inputs are open

\(\Rightarrow \) no current flows into opamp inputs (\(R = 10^6 \Omega \))

\(\Rightarrow \) large gain works over small input range
Now for our 1st Amp Circuit

Try

\[V_{out} = A \left(V_{in} - 0 \right) = A V_{in} \]

\[A \text{ is } \approx 10^5 \]

Actual Output

\[-V_{supply} < V_{out} < +V_{supply} \]

\[\approx 1^{st} \text{ Reality Check} \]

Frequency Response

Not Good!
Very narrow band range

G looks like RC low pass filter

\[\approx 25 \text{ Hz} \]
We can model this behavior:

\[A = \frac{A_0}{1 + i \frac{f}{f_0}} = \frac{f_0 A_0}{f_0 + i f} \]

\[f_T = f_0 A_0 = \text{unity gain frequency} \]

Because \[A = 1 = \frac{f_0 A_0}{f_0 + i f_T} \]

\[|A| = \frac{f_0 A_0}{f_0 + 2f_0 A_0} = \frac{A_0}{1 + i A_0} \]

\[A_0 \gg 1 \Rightarrow A = -i \quad |A| = 1 \]

Summary: Simple op amp by itself has

Good input impedance (\(10^{12}\)Ω)

Ok output impedance (\(\approx 40\)Ω)

Too much gain except for MV signals

Terrible frequency response

\(\Rightarrow \) What is typical freq range [20 - 20k audio] \(\rightarrow 20\mu Hz\) radio

Simple solution is to use negative feedback loop.

\(V_{in} \) changes \(V_{+} \), \(V_{+} \) changes \(V_{out} \)

\(V_{out} \) changes to decrease \((V_{+} - V_{-})\) (diff)
First take $R = \infty$, $R_F = 0$

Imagine V_- input at some value $V_+ = V_-$

V_{in} increases, V_+ increases so

$V_+ - V_- \text{ increases}$

$V_{out} = A(V_+ - V_-) \text{ increases until}$

$V_- = V_+ \text{ again } \neq 0$

But now $V_{out} \to 0$, unstable

So actually we want

$V_{out} = A(V_+ - V_-) \Rightarrow \text{just compensate for } V_+ - V_-$

$V_- = V_{out} \Rightarrow V_{out} = A(V_+ - V_{out})$

We want

$V_{out} = \frac{A}{1 + A} V_+ \Rightarrow V_+ = V_{in}$

\Rightarrow No gain! Called a follower (useful!)

Now add R_F, R

$V_{out} = A(V_+ - V_-)$

$V_- = V_{out} \frac{R}{R + R_F}$

$V_+ = V_{in}$
\[V_{out} = A \left(\frac{V_{in} - \frac{R}{R+R_F}}{R+R_F} \right) \]

\[V_{out} \left(1 + \frac{AR}{R+R_F} \right) = A \cdot V_{in} \]

\[\frac{V_{out}}{V_{in}} = \frac{A}{1 + \left(\frac{R}{R+R_F} \right)A} = \frac{1}{A + \frac{R}{R+R_F}} \]

For \(A >> 1 \)

\[\frac{V_{out}}{V_{in}} \approx \frac{1}{B + \frac{R}{R+R_F}} = \frac{R+R_F}{R+R_F + R} \]

Closed Loop Gain

\[G = 1 + \frac{R_F}{R} \]

Non-Inverting Gain, because \(V_{out} \) same sign as \(V_{in} \)

Closed Loop Gain = 1 + \(\frac{R_F}{R} \)

Closed Loop Gain, independent of \(A \) (as long as \(A \) is large!)

> What about frequency response?

Go back to

\[\frac{V_{out}}{V_{in}} = \frac{A}{1 + BA} \]

Then

\[A \rightarrow \frac{A_0}{1 + \frac{i \cdot f}{f_0}} \]

so

\[\frac{V_{out}}{V_{in}} = \frac{A_0/(1 + i \cdot f/f_0)}{1 + \frac{BA_0}{1 + i \cdot f/f_0}} \]
\[
\frac{V_{out}}{V_{in}} = \frac{A_0}{1 + i \frac{f}{f_0} + A_0 B} = \frac{A_0}{1 + A_0 B + i \frac{f}{f_0}}
\]

\[
= \left(\frac{A_0}{1 + A_0 B} \right) \left(\frac{1 + i \frac{f}{f_0}}{1 + i \frac{f}{f_0} (1 + A_0 B)} \right)
\]

Let \(G_0 = \frac{A_0}{1 + A_0 B} \) (low freq gain)

\[
f_B = \text{band width} = f_0 (1 + A_0 B)
\]

\[
G = \frac{V_{out}}{V_{in}} = \frac{G_0}{1 + i \frac{f}{f_0}}
\]

\[
\begin{align*}
G_0 & \quad \text{dB} \left(f \approx f_0 + 3 \text{dB} \right) \gg G = 0.70 + G_0 \\
\end{align*}
\]

\[f_B\]

\[
\text{Note:} \quad f_B \gg f_0 \quad (1 + A_0 B) \gg 1
\]

\[
\Rightarrow \quad G_0 \approx 1 + \frac{R_c}{R} = \frac{1}{B} \quad \text{"trading" bandwidth for gain}
\]

\[B \text{ large} \Rightarrow f_B \Rightarrow \text{large} \quad \text{G smaller}
\]
Don't forget Freq Response - sine waves
Stop function \(\Rightarrow \exp \)

\[v_{in} \sqrt{\frac{\text{vout}}{1 - e^{-\frac{t}{\tau}}}} \]

\[\tau = \frac{1}{2\pi f_B} \]

Note also \(C_0 = \frac{A_v}{(1 + A_v B) f_0} = \frac{f_T}{f_B} \)

\[C_0 f_B = f_T \]

\[f_T \approx 5 \text{MHz} \]

\[C_0 = \frac{f_T}{f_B} \quad \text{or} \quad f_B = \frac{f_T}{C_0} \]

\[f_B = f_T \]

\[C_0 = 100 \Rightarrow f_B = \frac{5 \text{MHz}}{100} = 50 \text{kHz} \]

\[B = 1, \quad C_0 = \frac{A_v}{1 + A_v} = 1 \]

\[f_B = f_T \]
Input to output for non-inverting and inverting model

\[V_{in} \rightarrow V_+ \]
\[V_+ \rightarrow \frac{1}{2} R_i \]
\[R_F \]
\[V_{out} \]

At input
\[i_m = \frac{V_+ - V_-}{R_i} = \frac{V_{in} - \frac{B V_{out}}{R_i}}{R_i} \]

\[V_{out} = \frac{\left(\frac{A}{1 + AB} \right) V_{in}}{1 + AB} \]

\[i_m = \frac{V_{in} - \frac{AB}{1 + AB} V_{in}}{R_i} \]

\[V_{no} \rightarrow \frac{1}{R_i^\prime} = \frac{\left(\frac{1}{1 + AB} - \frac{AB}{1 + AB} \right) V_{in}}{1 + AB R_i} \]

\[= \frac{V_{ir}}{(1 + AB) R_i} \]

\[(i = \frac{v}{R}) \]

\[R_i^\prime = (1 + AB) R_i \]
For output, use trick

\[i_o = V - \frac{A(n_+ - n_-)}{R_0} \]

\[n_+ = 0 \]
\[n_- = V_B \]

\[i_o = V - \frac{-AVB}{R_0} = \frac{V(1 + AB)}{R_0} \]

So

\[R_0' = \frac{R_0}{1 + AB} \]

\[R_0 \approx 40R \quad R_0' \ll 1R \]

What does this mean?

N-I-Amp looks like

\[
\begin{bmatrix}
\frac{R_0}{1 + AB} \\
N_{out}
\end{bmatrix}
\]