
Due by 5 pm February 8 (brown homework cabinet in G2B66)

(do not use the “provisional rules” in Taylor’s book!)

1. (3 points) The radius of a sphere is measured to be $2.00 \pm 0.04 \times 10^{-6}$ m. What is the fractional error on the surface area of the sphere? What is the absolute error on the surface area of the sphere?

2. (3 points) R is measured to be 4.23 ± 0.08 ohms. I is measured to be 9.5 ± 1 Amps. If $V = IR$, a) what is fractional error in V? b) report V and δV in standard format.

3. (3 points) Given the “Master Rule” (from lecture notes, or Taylor eqn 3.47), show that for $f=x/y$, $\delta f/f = [(\delta x/x)^2 + (\delta y/y)^2]^{1/2}$.

4. (3 points) $F = 60 \pm 2$ Newton. $k = 300 \pm 3$ Newtons/meter, and $S=F/k$. What is S and δS, reported in standard format?

5. (3 points) $A = 5.2 \pm 0.7$ cm, $\theta = 34.2 \pm 0.2$ degrees, and $P(A,\theta) = A \cos(\theta)$. Use the master rule to determine P and δP. And report in standard format. Hint, if you try to do anything that is related to calculus and trigonometry, think “radians”, not “degrees”.