Transformed E&M I homework

Vector Field (potential)
(Griffiths Chapter 1)

Vector identities (Chapter 1)

Question 1. Cute checks of fundamental theorems

DIVERGENCE THEOREM (Griffiths 1.59)

Is there meaning to this math?

Here are two cute checks of the fundamental theorems:

(a) Combine Corollary 2 to the gradient theorem with Stokes’ theorem (\(\mathbf{v} = \nabla T \), in this case). Show that the result is consistent with what you already knew about second derivatives.

(b) Combine Corollary 2 to Stokes’ theorem with the divergence theorem. Show that this is consistent with what you already knew.

Question 2. Show various identities using vector identities

DIVERGENCE THEOREM (Griffiths 1.60)

Is there meaning to this math?

Although the gradient, divergence and curl theorems are the fundamental integral theorems of vector calculus, it is possible to derive a number of corollaries from them. Show that:

(a) \[\int (\nabla T) d\tau = \oint_s T d\mathbf{a} \] [Hint: Let \(\mathbf{v} = eT \) where \(e \) is a constant, in the divergence theorem; use the product rules]

(b) \[\int (\nabla \times \mathbf{v}) d\tau = -\oint_s \mathbf{v} \times d\mathbf{a} \] [Hint: Replace \(\mathbf{v} \) by \((\mathbf{v} \times e) \) in the divergence theorem]

(c) \[\int [\nabla^2 U + (\nabla T) \cdot (\nabla U)] d\tau = \oint_s (\nabla U) \cdot d\mathbf{a} \] [Hint: Let \(\mathbf{v} = TVU \) in the divergence theorem]

(d) \[\int (\nabla^2 U - U \nabla^2 T) d\tau = \oint_s (\nabla U - U \nabla T) \cdot d\mathbf{a} \] [Comment: This is known as Green’s theorem; it follows from (c) which is sometimes called Green’s identity]

(e) \[\int_s \nabla T \times d\mathbf{a} = -\oint_p T d\mathbf{l} \] [Hint: let \(\mathbf{v} = eT \) in Stokes’ theorem]

Question 3. Show vector identity

VECTOR CALCULUS IDENTITIES, PROOF (From Lorrain, Corson and Lorrain, Electromagnetic Fields and Waves, Problem 1.6)

Show that
\[\int_V \nabla f \, dV = \oint_A f \, dA \] where A is the area of the closed surface bounding the volume V. Hint: multiply each side by a constant vector and use calculus theorems.

Question 4. Check Stokes’ theorem with line integral

STOKES’ THEOREM (Downloaded from Reed)

Consider the vector field written in cylindrical coordinates:

\[A = s^2 \hat{\phi} \]

Sketch this vector function. Check Stokes’ theorem by calculating the line integral

\[\oint A \cdot dl \]

around a circle of radius 2 centered at the origin and oriented in the x-y plane. Compare this to the surface integral of \(\nabla \times A \) over the interior of the circle.

Question 5. Evaluate surface integrals and verify Stokes

LINE, SURFACE, STOKES; A little more practice on vector calculus: Consider the vector function \(F(r) = \hat{\varphi} \) where \(\hat{\varphi} \) is defined as conventional for spherical coordinates.

a. Calculate the line integral

\[\int_C F \cdot dl \]

where \(C \) is a circle of radius \(\rho \) in the xy plane, centered at the origin, and where the integral is evaluated with dl oriented counterclockwise.

b. Calculate the surface integral

\[\int_H (\nabla \times F) \cdot da \]

where the surface \(H \) is a hemisphere that is above and bounded by the curve \(C \) used for part a. The surface integral is calculated with da oriented outward.

c. Calculate the surface integral

\[\int_D (\nabla \times F) \cdot da \]

where \(D \) is now the disk in the xy plane that is bounded by curve \(C \), and da is oriented upward.

d. Verify that Stokes’ theorem holds for both surfaces \(H \) and \(D \)