Extinction
Extinction results when the vibration directions of a mineral are parallel/perpendicular to the vibration directions of the polarizers.

The fast and slow rays are perpendicular to each other, and when either of the two are parallel/perpendicular to the polarizer directions, no light will come through - extinction results.

![Diagram showing extinction](image1)

Inclined or parallel extinction
Extinction of a mineral compared to its crystallographic features.

Parallel extinction is when extinction occurs parallel to the cleavage or crystallographic direction.
Inclined extinction is when extinction occurs at an angle to the cleavage or crystallographic direction.
Symmetrical extinction occurs when extinction angle is 45.

![Diagram showing inclined and parallel extinction](image2)

Anomalous Extinction
When the mineral won’t go into good extinction with crisp black edges.

Some light still comes through as dark muddy colors. This is due to dispersion – extinction positions are different for different colors (wavelengths) of light. Some minerals are more sensitive to this than others.

Some highly colored minerals will affect the resulting color of birefringence.
1 – light comes out of lower polarizer vibrating N-S
2 – is refracted upon entering mineral into a fast and a slow ray and emerges from mineral
3 – analyzer (upper polarizer) resolves the fast and slow rays into E-W components (lets pass the E-W components)
4 – where they interfere with each other causing the phenomena of birefringence and retardation

Abbreviations & Definitions:

- **Bf** = Birefringence (unitless)
- **Δ** = Retardation (units = $m\mu = 10^{-7}$ cm)
- **n** = index of refraction (unitless – it’s a ratio)
- **n_{slow}** = index of refraction of slow ray
- **n_{fast}** = index of refraction of fast ray
- **thickness** of sample (units = $\mu \times 1000$)
 (standard thin section = 30 μ)

Index of Refraction

The ratio of velocity of light in a vacuum (set = 1.0 as reference) to the velocity of light in a mineral

or

the ratio of the distance that light travels in a vacuum to the distance that light travels in the mineral *during the same time interval.*

Birefringence - Difference between maximum & minimum index of refraction

$$Bf = n_{slow} - n_{fast}$$

Retardation - Phase difference between the fast and slow rays after they travel through the sample

$$\Delta = (n_{slow} - n_{fast}) \times \text{thickness}$$

Example: Quartz

- $Bf_{\text{max}} = 0.009$ (parallel to C-axis)
- $\Delta = 270 m\mu = \text{very light grey}$
- thickness = 30,000 $m\mu = 30 \mu = 0.03\text{mm}$

but at $Bf_{\text{min}} = 0$ (perpendicular to C-axis)

- $\Delta = 0 m\mu = \text{black}$

Pleochroism - Differential absorption of light by different crystallographic directions of the mineral. This causes the mineral to change color (or depth of color) as the mineral is rotated under plane light