Local Competition & Interconnection: A Survey

James Alleman
Interdisciplinary Telecommunications Program
University of Colorado

Copyright © 1997, James Alleman. All Rights Reserved

Agenda

- Regulation
- Incentive Regulation
- Interconnection Pricing
- Efficient Component Pricing
- Rule
- Theoretical Model
- Summary/Recommendations

Agenda

- Regulation
 - Goals
 - Types/Solutions
 - Advantages/disadvantages

Regulatory Goals

- Correct Prices
 - Retail
 - Intermediate Goods
- Cost Minimization
- Rent Extraction (Monopoly)
- Universal Service

Regulatory Solutions

- Rate of Return Regulation (ROR)
- No Regulation
- Benchmark (Yardstick)
- Incentive Regulation

Regulatory Solutions

- Rate of Return Regulation
 - Traditional, Many States
- Benchmark (Yardstick)
 - Singapore, Macau
- No Regulation
 - New Zealand
Regulatory Solutions

- **Rate of Return Regulation**
- **Benchmark (Yardstick)**
- **No Regulation**
- **Incentive / Price-caps Regulation**
 - Most Countries
 - Many States in USA

Incentive / Price Caps Regulation

- **Rationale**
 - Rate of Return Regulation
 - Privatization
- **Features**
 - Prices Change with the CPI
 - Basket of Goods
 - Productivity Factor

Rationale

- **Problems with ROR**
 - Cost Plus Regulation
 - Lack of Incentives

Rationale

- **Price Caps Improvements**
 - Cost Savings Incentives
 - Reduced Administration

Agenda

- **Regulation**
- **Incentive Regulation**
 - Features
 - Promotion of Competition
 - Why?

Incentive Regulation

- **Promotion of Competition**
- **Incumbent’s Price Flexibility**
- **Price Caps & Productivity goal**

\[\sum w_i \Delta P_i \leq \Delta CPI - X \]
Incentive Regulation

Role of Competition
- Allocation of Resources
- Incentive for Efficiency
- Threat of Entry Discipline

Additional Motivation for Competition
- Product Differentiation
- Cost Differences
- Benchmark Competition (Yardstick)

Agenda
- Regulation
- Incentive Regulation
- Interconnection Pricing
 - Problem
 - Goals
 - Solution?
Intermediate Pricing Problem

- Essential/Bottleneck Facility
- Natural Monopoly
- Input to Competitive Service
 => Interconnection Price Critical

Intermediate Prices Goals

- Encourage Entry:
 ▶ Avoid Inefficient Bypass
 ▶ Avoid Network Duplication
 ▶ Incentive for Incumbent to Develop & Maintain Network
 ▶ Promote Competitive Market Transition

Prices Intermediate Goods

- Efficient Component Pricing Rule:
 ▶ ECPR
 ▶ Baumol/Willig Rule
 ▶ Parity Principle
- Incremental + Opportunity Cost

Efficient Component Pricing

- What is Covered?
- What is not Covered?

Agenda

- Regulation
- Interconnection Pricing
- Efficient Component Pricing Rule ECPR
 ▶ Critique
 ▶ Laffont/Tirole
 ▶ Vickers/Armstrong/Doyle

19-24
ECPR, Covered

- Incremental Cost plus
- Opportunity Cost

ECPR, Not Covered

- Monopoly Rents
- X - inefficiency
- Embedded Cross-Subsidies
- Universal Service Obligation
- Demand Expansion

X-in inefficiency

- RBOC and GTE Down-sizing
- IXC's Down-sizing
- BT's Profit Improvement
- New Zealand's Down-sizing

ECPR, Other Constraints

- Contestable Market
- Fixed Production Coefficients
- No Bypass
- Homogeneous Products
- Linear Prices

Incentive Regulation / Price Caps

- Contestability
 - Foundation of Theory
 - Challenge to Theory

Benchmark Model

- No Distortions
- No Bypass
- No Entry Costs
- No Entrant Market Power

Agenda

- Regulation
- Interconnection Pricing
- Efficient Component Pricing Rule
- **Theoretical Model**
 - Benchmark Model
 - Regulatory Implementation
 - Global Price-caps

Theoretical Framework

\[Q = q_0 + q_1 + q_2 \]

\[k = \text{fixed cost (access deficit)} \]

\[c_0, c_1, c_2: \text{average incremental costs} \]

Prices:

- \(a: \text{access} \)
- \(p_0: \text{exchange} \)
- \(p_1: \text{incumbents toll} \)
- \(p_2: \text{competitive toll} \)

First Best (all prices = marginal costs):

\[p_0 = c_0 \]
\[p_1 = c_0 + c_1 \]
\[p_2 = c_0 + c_2 \]
\[a = k \]

Access deficit recovered via state funds

Note: An inefficient entrant is defined as one whose cost is \(c_2 > c_1 \), but entry occurs. That is the entrant's cost is greater than the incumbent's.
Theoretical Framework

Long Run Incremental Costs (Australia):

\[a = c_0 \]

Theoretical Framework

Full Distributed Costs (add mark-up to LRIC):

\[
\begin{align*}
p^0 &= c_0 + (k/Q) \\
p^1 &= c_0 + (k/Q) + c_1 \\
p^2 &= c_0 + (k/Q) + c_2 \\
a &= c_0 + (k/Q)
\end{align*}
\]

Theoretical Framework

Objections to FDC

- Incentives
 - Cost-plus like
- Lack of Discrimination
 - Inelastic segments favored
 - Non-linear prices not possible
- Inefficient Entry Possible

Theoretical Framework

OFTEL Rule ("tax" mark-up on profits):

\[
\begin{align*}
\pi_0 &= (p^0 - c_0)q_0 \\
\pi_1 &= (p^1 - c_0 - c_1)q_1 \\
\pi_2 &= (a - c_0)q_2, \text{ (profit from entrant)} \\
a &= c_0 + (k/q_1)[\pi_1/(\pi_0 + \pi_1 + \pi_2)]
\end{align*}
\]

Theoretical Framework

Efficient Component Pricing Rule (California & New Zealand):

\[a = (p_1 - c_1) = c_0 + (p_1 - c_0 - c_1) \]

\[\text{incremental + opportunity costs} \]

Access price \(a \) depends on \(p_1 \).
How is \(p_1 \) set?

Theoretical Framework

Optimal Regulation (Ramsey-Boiteux):

\[
\begin{align*}
\frac{p^0 - c_0}{p^0} &= \left[\frac{\lambda}{(1 + \lambda)} \right] (1/\eta_0) \\
\frac{p^1 - c_0 - c_1}{p^1} &= \left[\frac{\lambda}{(1 + \lambda)} \right] (1/\eta_1) \\
\frac{p^2 - c_0 - c_2}{p^2} &= \left[\frac{\lambda}{(1 + \lambda)} \right] (1/\eta_2)
\end{align*}
\]

\(\lambda \): shadow price of the budget constraint

\(\eta_i \): the "superelasticities"
Theoretical Framework

Optimal Regulation (continued):

\[a = p^2 - c_2, \text{ by assumption,} \]
implies

\[a = c_0 + \left[\frac{\lambda}{(1 + \lambda)} \right] \frac{(p^2/\eta^2)}{\eta^2} \]

Global Price-caps

- Intermediate Good as Final Good
- Ramsey Optimal Rate Structure
- Partial Price-caps Distorting

Implementing Optimal Regulation

- Informationally Demanding
 - Marginal Costs
 - Demand Elasticities

Implementing Optimal Regulation

- Informationally Demanding
- Compounded by:
 - Informational asymmetries
 - Regulatory capture

Implementing Optimal Regulation

- Informationally Demanding
- Compounded by:
 - Cost-based Price Incorrect
 - Usage must be considered

Summary / Recommendations

- Global Price-cap Preferred
- ECPR Useful with Global Price-caps
- Instruments Must Equal Goals
- Informationally Demanding
- No Simple Solution