Harmonically Forced SDOF Oscillator
Harmonically Force Driven SDOF Oscillator

(a) SOF system

\[F = \text{m} \cos \Omega t \]

(b) DFBD

\[F_s = k u \]
\[F_d = c \dot{u} \]

\[F_l = m \ddot{u} \]

Static equilibrium position

\[u = u(t) \]

\[p(t) = p_0 \cos \Omega t \]
Equation of Motion

From the Dynamic Free Body Diagram (DFBD) of previous slide, we get the EOM:

\[m \ddot{u} + c \dot{u} + k u = p_0 \cos \Omega t \]

Damping, modeled by the \(c u \) term, is included from the start since it is important in finding the maximum amplification at resonance.

The EOM is \textbf{linear and second order ODE}, as in the previous Lecture, but now this ODE is \textbf{non-homogeneous}. According to the theory of such equations, the solution \(u(t) \), which is called the \textbf{displacement response} is the sum of \textbf{two components}.
Response Decomposition

As remarked in the last slide, the total response $u(t)$ can be expressed as the sum of two components: called homogeneous and particular in applied math textbooks:

$$u(t) = u_H(t) + u_P(t)$$

Engineers use a terminology with closer connection to physics:

- **homogeneous solution** \Rightarrow transient response
- **particular solution** \Rightarrow steady-state response
Sourse and Significance of Transient Vs. Steady Response

The transient (=homogeneous) response is the solution under zero force. It is primarily determined by initial conditions.

The steady-state (=particular) response is produced by the applied force.

If there is at least a tiny amount of damping, the transient solution decays at time t grows, and eventually only the steady-state component survives. This explains the "transient" qualifier.
Steady Response Expression

See Lecture Notes
Magnification Factor and Phase Lag as Function of Frequency Ratio

Graph (a) shows the magnification factor P_s as a function of frequency ratio $r = \Omega/\omega_n$ for various values of damping ratio ξ. Graph (b) shows the phase lag α in degrees as a function of frequency ratio $r = \Omega/\omega_n$ for the same range of ξ values.
Magnification Factor and Phase Lag as Function of Frequency Ratio - Log-Log Plots

(a)

(b)

Frequency ratio $r = \Omega/\omega_n$

- $\xi=0.01$
- $\xi=0.1$
- $\xi=0.2$
- $\xi=0.5$
- $\xi=1$
- $\xi=5$

Magification factor D_s

Phase lag α in degrees

Frequency ratio $r = \Omega/\omega_n$
SDOF Oscillator Excited by Harmonic Base Motion

\[F = m \ddot{u} \]

\[F = k (u - u_b) \]

\[F_d = c (\dot{u} - \dot{u}_b) \]

\[F_l = m \ddot{u} \]

\[u_b = U_b \cos (\Omega t - \alpha_b) \]

\[u = u(t) \]

(a) Prescribed base motion

(b) Static equilibrium position for zero base motion