Chapter 4: ONE-PARAMETER RESIDUAL EQUATIONS

Homework Exercises for Chapter 4
One-Parameter Residual Equations – Solutions

EXERCISE 4.1
(a) The residual is separable because
\[p = \begin{bmatrix} u_1 + 3u_2^2 \\ u_2 + 6u_1u_2 \end{bmatrix}, \quad f = \begin{bmatrix} 2\Lambda_1 \\ \Lambda_2 \end{bmatrix}. \] (E4.3)

(b) The internal and external forces are derivable from the potentials
\[U = \frac{1}{2}(u_1^2 + u_2^2) + 3u_1u_2, \quad P = 2u_1\Lambda_1 + u_2\Lambda_2. \] (E4.4)

EXERCISE 4.2 First stage:
\[f = \begin{bmatrix} \Lambda_1 \\ \Lambda_2 \end{bmatrix} = (1 - \lambda) \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} 0 \\ 5 \end{bmatrix}, \quad q = \frac{\partial f}{\partial \lambda} = \begin{bmatrix} 0 \\ 5 \end{bmatrix}. \] (E4.5)

Second stage:
\[f = \begin{bmatrix} 2\Lambda_1 \\ \Lambda_2 \end{bmatrix} = (1 - \lambda) \begin{bmatrix} 0 \\ 5 \end{bmatrix} + 2\lambda \begin{bmatrix} 10 \\ 5 \end{bmatrix} = \begin{bmatrix} 20\lambda \\ 5 + 5\lambda \end{bmatrix}, \quad q = \frac{\partial f}{\partial \lambda} = \begin{bmatrix} 20 \\ 5 \end{bmatrix}. \] (E4.6)

Since each \(q \) is constant, the loading is proportional in each stage.

EXERCISE 4.3
(a) Yes; the only difference is that \(p_1 = 2\Lambda_1^2 \).
(b) For stage 1 \(q \) is the same as above. But in stage 2,
\[q = \frac{\partial f}{\partial \lambda} = \begin{bmatrix} \frac{\partial(200\lambda^2)}{\partial \lambda} \\ \frac{\partial(5 + 5\lambda)}{\partial \lambda} \end{bmatrix} = \begin{bmatrix} 400\lambda \\ 5 \end{bmatrix}. \] (E4.7)

Therefore the loading is not proportional during the second stage.

EXERCISE 4.4 The tangent stiffness \(K \) and the incremental load vector \(q \) obtained from (E4.1) using equations (3.8) and (4.4), respectively are
\[K = \begin{bmatrix} 1 & 6u_2 \\ 6u_2 & 1 + 6u_1 \end{bmatrix} \quad \text{and} \quad q = \begin{bmatrix} 0 \\ 5 \end{bmatrix}. \] (E4.8)

The incremental velocity using (4.10) is
\[v = K^{-1}q = \begin{bmatrix} 1 \\ 6u_2 \\ 1 + 6u_1 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 5 \end{bmatrix} = \frac{1}{6u_1 - 36u_2^2 + 1} \begin{bmatrix} -30u_2 \\ 5 \\ 1 \end{bmatrix}. \] (E4.9)

The tangent vectors are:
\[t = \begin{bmatrix} v \\ 1 \end{bmatrix} = \begin{bmatrix} -30u_2 \\ 5 \\ 6u_2 - 36u_2^2 + 1 \\ 1 \end{bmatrix} \quad \text{and} \quad t _b o l d = \frac{1}{f} v. \] (E4.10)
where f is determined from (4.26) as

$$f = \left[\frac{(1 + 6u_1 - 36u_2^2)^2 + 25 + 900u_2^2}{(1 + 6u_1 - 36u_2^2)^2} \right]^\frac{1}{2}. \quad (E4.11)$$

The hyperplane equation is

$$\frac{1}{6u_1 - 36u_2^2 + 1} [-30u_2(u_1 - u_{1p}) + 5(u_2 - u_{2p})] + \lambda - \lambda_p = 0. \quad (E4.12)$$

The differential equation of the orthogonal flow given by equation (4.22) is

$$\frac{1}{6u_1 - 36u_2^2 + 1} [-30u_2\dot{u}_1 + 5\dot{u}_2] + \dot{\lambda} = 0. \quad (E4.13)$$

EXERCISE 4.5 $||r||$ is the distance to $r = 0$. Thus $||r|| = C$ are hypersurfaces of equal distance to an equilibrium path.

EXERCISE 4.6 Yes. The most general expression of a curve in (u, λ) space is the parametric form $u = u(t)$ and $\lambda = \lambda(t)$. The tangent direction is defined by $du/dt = \dot{u}$ and $d\lambda/dt = \dot{\lambda}$. Equation (4.17) is a special form obtained by taking $t \equiv \lambda$.

4–17