The Plane Stress Problem
Plate in Plane Stress

Inplane dimensions: in x,y plane

Thickness dimension or transverse dimension

Top surface
Mathematical Idealization as a Two Dimensional Problem
Plane Stress Physical Assumptions

Plate is flat and has a symmetry plane (the midplane)

All loads and support conditions are midplane symmetric

Thickness dimension is much smaller than inplane dimensions

Inplane displacements, strains and stresses uniform through thickness

Transverse stresses σ_{zz}, σ_{xz} and σ_{yz} negligible, set to 0

Unessential but used in this course:

Plate fabricated of homogeneous material through thickness
Notation for Stresses, Strains, Forces, Displacements

Thin plate in plane stress

In-plane internal forces

\[
\begin{align*}
&\sigma_{xx}, \sigma_{yy}, \sigma_{xy} = \sigma_{yx} \\
&p_{xx}, p_{yy}, p_{xy}, p_{yx} \\
&\left(\begin{array}{c}
\frac{dy}{dx} \\
\frac{dx}{dy}
\end{array}\right)
\end{align*}
\]

In-plane stresses

\[
\begin{align*}
&\sigma_{xx}, \sigma_{yy}, \sigma_{xy} = \sigma_{yx} \\
\end{align*}
\]

In-plane body forces

\[
\begin{align*}
&b_x, b_y \\
&\left(\begin{array}{c}
\frac{dy}{dx} \\
\frac{dx}{dy}
\end{array}\right)
\end{align*}
\]

In-plane strains

\[
\begin{align*}
&e_{xx}, e_{yy}, e_{xy} = e_{yx} \\
\end{align*}
\]

In-plane displacements

\[
\begin{align*}
&u_x, u_y \\
&\left(\begin{array}{c}
\frac{dy}{dx} \\
\frac{dx}{dy}
\end{array}\right)
\end{align*}
\]
Inplane Forces are Obtained by Stress Integration Through Thickness

Inplane stresses

\[\sigma_{xx} \quad \sigma_{yy} \quad \sigma_{xy} = \sigma_{yx} \]

Inplane internal forces
(also called membrane forces)
Plane Stress Boundary Conditions

Boundary displacements $\hat{\mathbf{u}}$ are prescribed on Γ_u (figure depicts fixity condition).

Boundary tractions $\hat{\mathbf{t}}$ or boundary forces $\hat{\mathbf{q}}$ are prescribed on Γ_t.

Stress BC details (decomposition of forces $\hat{\mathbf{q}}$ would be similar).
The Plane Stress Problem

Given:

- geometry
- material properties
- wall fabrication (thickness only for homogeneous plates)
- applied body forces
- boundary conditions:
 - prescribed boundary forces or tractions
 - prescribed displacements

Find:

- inplane displacements
- inplane strains
- inplane stresses and/or internal forces
Matrix Notation for Internal Fields

\[\mathbf{u}(x, y) = \begin{bmatrix} u_x(x, y) \\ u_y(x, y) \end{bmatrix} \quad \text{displacements} \]

\[\mathbf{e}(x, y) = \begin{bmatrix} e_{xx}(x, y) \\ e_{yy}(x, y) \\ 2e_{xy}(x, y) \end{bmatrix} \quad \text{strains (factor of 2 in } e_{xy} \text{ simplifies "energy dot products")} \]

\[\mathbf{\sigma}(x, y) = \begin{bmatrix} \sigma_{xx}(x, y) \\ \sigma_{yy}(x, y) \\ \sigma_{xy}(x, y) \end{bmatrix} \quad \text{stresses} \]
Governing Plane Stress Elasticity Equations in Matrix Form

\[
\begin{bmatrix}
 e_{xx} \\
 e_{yy} \\
 2e_{xy}
\end{bmatrix} = \begin{bmatrix}
 \frac{\partial}{\partial x} & 0 \\
 0 & \frac{\partial}{\partial y} \\
 \frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{bmatrix} \begin{bmatrix}
 u_x \\
 u_y
\end{bmatrix}
\]

\[
\begin{bmatrix}
 \sigma_{xx} \\
 \sigma_{yy} \\
 \sigma_{xy}
\end{bmatrix} = \begin{bmatrix}
 E_{11} & E_{12} & E_{13} \\
 E_{12} & E_{22} & E_{23} \\
 E_{13} & E_{23} & E_{33}
\end{bmatrix} \begin{bmatrix}
 e_{xx} \\
 e_{yy} \\
 2e_{xy}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 \frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial y} \\
 0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{bmatrix} \begin{bmatrix}
 \sigma_{xx} \\
 \sigma_{yy} \\
 \sigma_{xy}
\end{bmatrix} + \begin{bmatrix}
 b_x \\
 b_y
\end{bmatrix} = \begin{bmatrix}
 0
\end{bmatrix}
\]

or

\[
e = Du \quad \sigma = Ee \quad D^T \sigma + b = 0
\]
Introduction to FEM

Strong-Form Tonti Diagram of Plane Stress Governing Equations

- **Displacement BCs**: $u = \hat{u}$ on Γ_u
- **Kinematic**: $e = D u$ in Ω
- **Constitutive**: \(\sigma = E e \) or \(e = C \sigma \) in Ω
- **Equilibrium**: $D \sigma + b = 0$ in Ω
- **Stresses**: σ
- **Force BCs**: $\sigma^T n = \hat{t}$ or $p^T n = \hat{q}$ on Γ_t
- **Prescribed tractions t or forces q**

- **Displacements**: u
- **Body forces**: b
- **Strains**: e
- **Prescribed displacements \hat{u}**

IFEM Ch 14 – Slide 11
Introduction to FEM

TPE-Based Weak Form Diagram of Plane Stress Governing Equations

\[
\delta \Pi = 0 \quad \text{in} \quad \Omega
\]

\[
e = D u
\quad \text{in} \quad \Omega
\]

\[
u = u^\text{\dagger}\quad \text{on} \quad \Gamma
\]

\[
\sigma = E e
\quad \text{in} \quad \Omega
\]

Displacement BCs

Kinematic

Constitutive

Equilibrium (weak)

Force BCs (weak)

Prescribed tractions \(t \) or forces \(q \)

\(\delta \Pi = 0 \quad \text{on} \quad \Gamma_t \)
Total Potential Energy of Plate in Plane Stress

\[\Pi = U - W \]

\[U = \frac{1}{2} \int_{\Omega} h \sigma^T e \, d\Omega = \frac{1}{2} \int_{\Omega} h e^T E e \, d\Omega \]

\[W = \int_{\Omega} h u^T b \, d\Omega + \int_{\Gamma_t} h u^T t \, d\Gamma \]

body forces \hspace{1cm} *boundary tractions*
Discretization into Plane Stress
Finite Elements
Plane Stress Element Geometries and Node Configurations

$n = 3$

$n = 4$

$n = 6$

$n = 12$
Total Potential Energy of Plane Stress Element

\[\Pi^e \gamma = U^e - W^e \]

\[U^e = \frac{1}{2} \int_{\Omega^e} h \sigma^T e \, d\Omega^e = \frac{1}{2} \int_{\Omega^e} h e^T E e \, d\Omega^e \]

\[W^e = \int_{\Omega^e} h u^T b \, d\Omega^e + \int_{\Gamma^e} h u^T t \, d\Gamma^e \]
Constructing a Displacement Assumed Element

Node displacement vector

\[\mathbf{u}^e = [u_{x1} \quad u_{y1} \quad u_{x2} \quad \ldots \quad u_{xn} \quad u_{yn}]^T \]

Displacement interpolation over element

\[
\begin{bmatrix}
 u_x(x,y) \\
 u_y(x,y)
\end{bmatrix} =
\begin{bmatrix}
 N_1^e & 0 & N_2^e & 0 & \ldots & N_n^e & 0 \\
 0 & N_1^e & 0 & N_2^e & \ldots & 0 & N_n^e
\end{bmatrix}
\begin{bmatrix}
 \mathbf{u}^e
\end{bmatrix}
\]

\[= \mathbf{N} \quad \mathbf{u}^e \]

\(\mathbf{N} \) is called the shape function matrix
It has order \(2 \times 2n \)
Differentiate the displacement interpolation \(x, y \) to get the strain-displacement relation

\[
e(x, y) = \begin{bmatrix}
\frac{\partial N_1^e}{\partial x} & 0 & \frac{\partial N_2^e}{\partial x} & 0 & \ldots & \frac{\partial N_n^e}{\partial x} & 0 \\
0 & \frac{\partial N_1^e}{\partial y} & 0 & \frac{\partial N_2^e}{\partial y} & \ldots & 0 & \frac{\partial N_n^e}{\partial y} \\
\frac{\partial N_1^e}{\partial y} & \frac{\partial N_1^e}{\partial x} & \frac{\partial N_2^e}{\partial y} & \frac{\partial N_2^e}{\partial x} & \ldots & \frac{\partial N_n^e}{\partial y} & \frac{\partial N_n^e}{\partial x}
\end{bmatrix}
\]

\(u^e = B \) \(u^e \)

\(B \) is called the strain-displacement matrix

It has order \(3 \times 2n \)
Element Construction (cont'd)

Element total potential energy

\[\Pi^e = \frac{1}{2} \mathbf{u}^e \mathbf{K}^e \mathbf{u}^e - \mathbf{u}^e \mathbf{f}^e \]

Element stiffness matrix

\[\mathbf{K}^e = \int_{\Omega^e} h \mathbf{B}^T \mathbf{E} \mathbf{B} \, d\Omega^e \]

Consistent node force vector

\[\mathbf{f}^e = \int_{\Omega^e} h \mathbf{N}^T \mathbf{b} \, d\Omega^e + \int_{\Gamma^e} h \mathbf{N}^T \mathbf{t} \, d\Gamma^e \]

due to: body force due to: surface tractions
Requirements on Finite Element Shape Functions

Interpolation Condition

\[N_i \text{ takes on value 1 at node } i, \quad 0 \text{ at all other nodes} \]

Continuity (intra- and inter-element) and **Completeness** Conditions

are covered later in the course (Chs. 18-19)