Overview
Course Coverage

This course consists of three Parts:

I. *Finite Element Basic Concepts*

II. *Formulation of Finite Elements*

III. *Computer Implementation of FEM*
Where the Course Fits

The field of Mechanics can be subdivided into 3 major areas:

- Theoretical
- Applied
- Computational
Branches of *Computational Mechanics* can be distinguished according to the physical focus of attention.

Computational Mechanics

- Nano and Micromechanics
- Continuum Mechanics:
 - Solids and Structures
 - Fluids
 - Multiphysics
- Systems
Computational Solid and Structural Mechanics

A convenient subdivision of problems in Computational Solid and Structural Mechanics (CSM) is

\[\text{Computational Solid and Structural Mechanics (CSM)} \]

\[\begin{align*}
\text{Statics} \\
\text{Dynamics}
\end{align*} \]
CSM Statics

A further subdivision of problems in CSM Statics is

\[
\text{CSM Statics} \begin{cases} \\
\text{Linear} \\
\text{Nonlinear} \\
\end{cases}
\]
For the numerical simulation on the computer we must now choose a \textit{spatial discretization method}:

- \textit{Finite Element Method}
- \textit{Finite Difference Method}
- \textit{Boundary Element Method}
- \textit{Finite Volume Method}
- \textit{Spectral Method}
- \textit{Mesh-Free Method}
Having selected the FEM for *discretization*, we must next pick a *formulation and a solution method*:

Formulation of FEM Model

- Displacement
 - Equilibrium
 - Mixed
 - Hybrid

Solution of FEM Model

- Stiffness
 - Flexibility
 - Mixed
Summarizing: This Course Covers

Computational structural mechanics

Linear static problems

Spatially discretized by displacement-formulated FEM

Solved by the stiffness method
What is a Finite Element?

Archimedes' problem (circa 250 B.C.): rectification of the circle as limit of inscribed regular polygons
Computing π "by Archimedes FEM"

<table>
<thead>
<tr>
<th>n</th>
<th>$\pi_n = n \sin(\pi/n)$</th>
<th>Extrapolated by Wynn-ε</th>
<th>Exact π to 16 places</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000000000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.0000000000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.828427124746190</td>
<td>3.414213562373096</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3.061467458920718</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3.121445152258052</td>
<td>3.141418327933211</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3.136548490545939</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>3.140331156954753</td>
<td>3.141592658918053</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>3.141277250932773</td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>3.141513801144301</td>
<td>3.141592653589786</td>
<td>3.141592653589793</td>
</tr>
</tbody>
</table>
The Idealization Process for a Simple Structure

Introduction to FEM

Roof Truss

Physical Model

member

joint

support

IDEALIZATION & DISCRETIZATION

Mathematical and Discrete Model
Two Interpretations of FEM for Teaching

<table>
<thead>
<tr>
<th>Physical</th>
<th>Mathematical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown of structural system into components (elements) and reconstruction by the assembly process</td>
<td>Numerical approximation of a Boundary Value Problem by Ritz-Galerkin discretization with functions of local support</td>
</tr>
<tr>
<td>Emphasized in Part I</td>
<td>Emphasized in Part II</td>
</tr>
</tbody>
</table>
FEM in Modeling and Simulation: Physical FEM

Physical system \(\xrightarrow{\text{FEM}}\) Discrete model \(\xrightarrow{\text{SOLUTION}}\) Discrete solution

Ideal Mathematical model

Simulation error = modeling + solution error

VALIDATION

Ideализация и дискретизация

VERIFICATION

solution error

generally irrelevant

CONTINUIFICATION

IFEM Ch 1–Slide 14
FEM in Modeling and Simulation: Mathematical FEM

Mathematical model

Discretization + solution error

Mathematical model

Discrete model

Discrete solution

IDEALIZATION & DISCRETIZATION

IDEALIZATION

REALIZATION

IDEALIZATION

REALIZATION

SOLUTION

VERIFICATION

VERIFICATION solution error

generally irrelevant

Ideal physical system

Discrete model

Discrete solution

FEM

Discretization + solution error
Model Updating in Physical FEM

- Physical system
- Experimental database
- FEM
- Parametrized discrete model
- Discrete solution
- Simulation error
Synergy Between Mathematical and Physical FEM

(Intermediate levels omitted)
Recommended Books for Linear FEM

Basic level (textbook): Cook, Malkus & Plesha (1989); this third edition is fairly comprehensive in scope and up to date although the coverage is more superficial than Zienkiewicz & Taylor.

Intermediate level: Hughes (1987). It requires substantial mathematical expertise on the part of the reader. Recently reprinted by Dover.

Mathematically oriented: Strang & Fix (1973). Most readable mathematical treatment although outdated in several subjects.

Most fun (if you like British "humor"): Irons & Ahmad (1980)

Best value for the $$$: Przemieniecki (Dover edition 1985, ~$16). Although outdated in many respects (e.g. the word "finite element" does not appear in this reprint of the original 1966 book), it is a valuable reference for programming simple elements.

Comprehensive web search engine for out-of print books: http://www3.addall.com