Weak and Variational Forms of the Poisson Equation
TABLE OF CONTENTS

§7.1	Introduction ..	7–3
§7.2	The Poisson Equation	7–3
§7.3	The Primal Functional	7–3
§7.3.1	Weighted Residual Form	7–4
§7.3.2	Master and Slave Fields	7–4
§7.3.3	Going for the Gold	7–5
§7.3.4	Work Pairings	7–7
§7.4	A Mixed Functional of HR Type	7–7
§7.4.1	The Weak Form	7–8
§7.4.2	Variational Statement	7–9
§7.4.3	The Variational Form	7–9
§7.5	The Divergence Theorem	7–10
§7.6	Textbooks and Monographs on Variational Methods	7–10
§7.6.1	Textbooks Used in VMM	7–11
§7.6.2	A Potpourri of References	7–11
§7.6.3	Variational Methods as Supplementary Material	7–13
§7.	Exercises ..	7–15
§7.1. Introduction

The chapter explains the construction of Weak and Variational Forms for the Poisson equation introduced in the previous Chapter. The Tonti diagram is used to visualize links that are weakened in the construction process. Two examples are worked out. One leads to the primal functional, the other to one of several possible mixed functionals.

§7.2. The Poisson Equation

For convenience we repeat here the split governing equations for the Strong Form of the Poisson equation studied in §6.2. The problem domain is depicted in Figure 7.1. We employ a generic notation of \(u \) for the primary variable, \(k \) for the constitutive coefficient, \(s \) for the source, \(g = \nabla u \) for the gradient of \(u \), and \(q = kg \) for the flux function.\(^1\)

![Figure 7.1. The problem domain for the Poisson equation, using generic notation.](image)

Field equations:

\[
\begin{align*}
\text{KE:} & \quad \nabla u = g \quad \text{in } V, \\
\text{CE:} & \quad kg = q \quad \text{in } V, \\
\text{BE:} & \quad \nabla \cdot q = s \quad \text{in } V.
\end{align*}
\] (7.1)

Classical boundary conditions:

\[
\begin{align*}
\text{PBC:} & \quad u = \hat{u} \quad \text{on } S_u, \\
\text{FBC:} & \quad q_n = q_n^T n = q_n = \hat{q}_n, \quad \text{on } S_q.
\end{align*}
\] (7.2)

Elimination of \(g \) and \(q \) yields the standard Poisson partial differential equation \(\nabla \cdot (k \nabla u) = s \). If \(k \) is constant over \(V \), this reduces to \(k \nabla^2 u = s \), and if \(s = 0 \), to the Laplace equation \(\nabla^2 u = 0 \).

The Tonti diagram of the Strong Form is shown in Figure 7.2.

From the Strong Form one can proceed to several Weak Forms (WF) by selectively “weakening” strong connections. Two choices are worked out in the following sections: the Primal functional and a Hellinger-Reissner-like mixed functional.

\(^1\) For the thermal conduction problem, \(u, k \) and \(s \) become \(T, -k \) and \(-h \), respectively, as described in §7.1. In fluid problems \(k \rightarrow \rho \) is the mass density.
§7.3. The Primal Functional

The **Primal Functional** is the most practically important one as a basis for FEM models of the Poisson equation. It is the analog of the Total Potential Energy of elasticity.

§7.3.1. Weighted Residual Form

Two of the strong links of Figure 7.2 are weakened, as shown in Figure 7.3:

1. The Balance Equation (BE) $\nabla \cdot \mathbf{q} = s$ in V. The residual is $r_{BE} = \nabla \cdot \mathbf{q} - s$.

2. The Flux Boundary Condition (FBC) $\mathbf{q} \cdot \mathbf{n} = q_n = \hat{q}$ on S_q. The residual is $r_{FBC} = \mathbf{q} \cdot \mathbf{n} - \hat{q}$.

The weighted residual statement is

$$R_{BE} = \int_V (\nabla \cdot \mathbf{q} - s) w_{BE} \, dV = 0, \quad R_{FBC} = \int_{S_q} (\mathbf{q} \cdot \mathbf{n} - \hat{q}) w_{FBC} \, dS = 0. \quad (7.3)$$

Here w_{BE} and w_{FBC} denote the weighting functions applied to the residuals r_{BE} and r_{FBC}, respectively. Both are scalar functions.

§7.3.2. Master and Slave Fields

The statement (7.3) is not very useful by itself. The field \mathbf{q} is “floating.” The weights are unknown. Looks like trying to find a black cat in a dark cellar at midnight.

We circumvent the first uncertainty by linking \mathbf{q} to the primary variable u. How? By traversing the strong links: $u \rightarrow \mathbf{g} \rightarrow \mathbf{q}$. A special notation, illustrated in Figure 7.?, is introduced to remind us that the auxiliary fields \mathbf{g} and \mathbf{q} are “strongly anchored” to u:

$$\mathbf{g}'' = \nabla u, \quad \mathbf{q}'' = k \mathbf{g}'' = k \nabla u. \quad (7.4)$$

The notation separates the unknown fields u, \mathbf{g} and \mathbf{q} into two groups. u is the **master field**, also called *primary, varied or parent* field. It is the only one to be varied in the sense of Variational Calculus. The other two: \mathbf{g}'' and \mathbf{q}'' are the **slave fields**, also called *secondary, derived or sibling* fields. The supercript, in this case $(.)''$, indicates ownership or “line of descent.” Slave fields **must be connected to their master through strong links**.
§7.3 THE PRIMAL FUNCTIONAL

\[
\int_V \left(\nabla \cdot \mathbf{q} - s \right) w_{BE} \, dV = 0 \\
\int_{\partial V} \mathbf{q} \cdot \mathbf{n} \, dS = 0
\]

\[
\mathbf{g} = \nabla u \quad \text{in} \ V \\
\mathbf{q} = \rho \mathbf{g} \quad \text{in} \ V \\
\hat{u} = u \quad \text{on} \ S_u \\
\hat{\mathbf{q}}
\]

Figure 7.3. A Weak Form of the Poisson problem, in which the BE and FBC links have been weakened.

We now rewrite the integrated residuals in (7.4) using the master field:

\[
R_{BE} = \int_V (\nabla \cdot \mathbf{q}^u - s) \, w_{BE} \, dV = \int_V (\nabla \cdot k \nabla u - s) \, w_{BE} \, dV \\
R_{FBC} = \int_{\partial V} \mathbf{q} \cdot \mathbf{n} \, dS = \int_{\partial V} (k \nabla u \cdot \mathbf{n} - \hat{\mathbf{q}}) \, w_{FBC} \, dS.
\]

Now we have a better handle on the residuals since those depend only on \(u \), whereas the weights are still at our disposal. These equations can be used to generate numerical methods upon selection of the weight functions, using the Method of Weighted Residuals. For example if \(w_{BE} = w_{FBC} = 1 \) one obtains the so-called subdomain method, one of whose variants (in fluid applications) becomes the Fluid Volume Method. Other possibility is to take weights to be the same as the corresponding residuals, which leads to the two-century-old method of Least Squares.

But for the Poisson equation a Variational Form exists. Why not try for the best?

§7.3.3. Going for the Gold

Start from (7.5) as the point of departure. Replace \(w_{BE} \) and \(w_{FBC} \) by the variations \(-\delta u\) and \(\delta u\) of the primary variable \(u \). Also rename residual \(R \) as \(\delta \Pi \) to emphasize that this will be hopefully the variation of a functional \(\Pi \) as yet unknown:

\[
\delta \Pi_{BE} = \int_V (- \nabla \cdot k \nabla u + s) \, \delta u \, dV, \quad \delta \Pi_{FBC} = \int_{\partial V} (k \nabla u \cdot \mathbf{n} - \hat{q}) \, \delta u \, dS.
\]

The variation \(\delta \Pi \) will be a combination of these two, for example \(\delta \Pi_{BE} + \delta \Pi_{FBC} \). Signs could be adjusted so that \(\delta \Pi \) is an exact variation, as worked out below.

The next operation is technical. We must reduce the order of the derivatives appearing in the volume integral of \(\delta \Pi_{BE} \) from two to one using the form of the Gauss divergence theorem worked out in

\[2\] The minus sign in the substitution \(w_{BE} \rightarrow -\delta u \) is inconsequential; it just gives a nicer fit with the divergence theorem transformation derived in §7.5.
Chapter 7: WEAK AND VARIATIONAL FORMS OF THE POISSON EQUATION

Figure 7.4. Rehash of the previous figure, in which the gradient g and flux q, relabeled g^u and q^u, are designated as slave fields. Both derive from the master field u.

detail in §7.5. The useful transformation is:

$$- \int_V \nabla \cdot (k \nabla u) \, \delta u \, dV = \int_V k \nabla u \cdot \delta \nabla u \, dV - \int_{S_q} k \nabla u \cdot n \, \delta u \, dS. \quad (7.7)$$

By definition $u = \hat{u}$ over S_u so $\delta u = 0$ there, and the surface integral over S reduces to one over S_q:

$$- \int_V \nabla \cdot (k \nabla u) \, \delta u \, dV = \int_V k \nabla u \cdot \delta \nabla u \, dV - \int_{S_q} k \nabla u \cdot n \, \delta u \, dS. \quad (7.8)$$

Inserting this into the first of (7.6) yields

$$\delta \Pi_{BE} = \int_V (k \nabla u \cdot \delta \nabla u + s \, \delta u) \, dV - \int_{S_q} k \nabla u \cdot n \, \delta u \, dS. \quad (7.9)$$

The combination $\delta \Pi_{BE} + \delta \Pi_{FBC}$ conveniently cancels out the integral of $k \nabla u \cdot n \, \delta u$ over S_q. The variation symbol δ can be then pulled in front of the integrals:

$$\delta \Pi = \delta \Pi_{BE} + \delta \Pi_{FBC} = \int_V (k \nabla u \cdot \delta \nabla u + s \, \delta u) \, dV - \int_{S_q} \hat{q} \, \delta u \, dS$$

$$= \delta \int_V \frac{1}{2} k \nabla u \cdot \nabla u \, dV + \delta \int_V s \, u \, dV - \delta \int_{S_q} \hat{q} \, u \, dS. \quad (7.10)$$

3 Presented there for convenience. The theorem can be found in any Advanced Calculus textbook.
Consequently the required Primal functional \(\Pi \), subscripted by “TPE” to emphasize its similarity to the Total Potential Energy functional of elasticity, is

\[
\Pi_{\text{TPE}}[u] = \frac{1}{2} \int_V k \nabla u \cdot \nabla u \, dV + \int_V s \, u \, dV - \int_{S_q} \hat{q} \, u \, dS
\]

where the variation is taken with respect to \(u \). Equations (7.12) and (7.13) together represent the Primal Variational Form of the Poisson equation.

Remark 7.1. If we work out the Euler-Lagrange (EL) equations of (7.12) and (7.13) using the rules of Variational Calculus, we obtain \(\nabla \cdot k \nabla u = s \) in \(V \) as EL equation, and \(k \nabla u = \hat{q} \) on \(S_q \) as natural boundary condition. These are precisely the equations that were weakened in §7.3.1. See Figure 7.4. The remaining equations, which pertain to the strong links, are assumed to hold *a priori*.

This happening is not accidental, but can be presented as general rule:

\[\delta \Pi_{\text{TPE}} = 0. \]

The variational principle only reproduces the weak links as EL equations and natural boundary conditions, respectively. The rule is discussed in more detail in chapters dealing with hybrid principles.

§7.3.4. Work Pairings

The primal functional (7.13) or (7.12) displays the following “variable pairings” in the volume integrals: \(s \, u \) and \(q \cdot g \). In the surface integral over \(S_q \) we find \(\hat{q} \, u \). These products can be interpreted physically as work or energy of the kind determined by the application being modeled.\(^4\)

The physical units of the variables and data must reflect that fact. The groupings are known as *work pairings* or *energy conjugates*.\(^5\) For volume integrals, the rule is: work pairings relate the *left and right boxes drawn at the same level* in the field-equations portion of the Tonti diagram.

In variational statements, such as \(\delta \Pi = 0 \), we find pairings such as \(s \, \delta u \) and \((\nabla \cdot q) \, \delta u \) in \(V \) and \(q_n \, \delta u \) on \(S_q \). These pairings provide guidelines on how to replace weight functions by variations with the correct physical dimensions. The rules are particularly important when constructing multifield and mixed functionals, as done next.

\(^4\) For example, thermal energy in the thermal conduction problem.

\(^5\) In mathematical-oriented treatments they receive names such as *bilinear pairs*, *inner product pairs* or *bilinear concomitants*.
Chapter 7: WEAK AND VARIATIONAL FORMS OF THE POISSON EQUATION

Figure 7.5. The Weak Form that leads to a mixed VF of HR type.

§ 7.4. A Mixed Functional of HR Type

Some definitions to start. A multifield functional is one that has more than one master field. It is single-field otherwise; for example the functional (7.12) derived above. A multifield functional is called mixed when the multiple master fields are internal.

There are several motivations for constructing mixed functionals. One reason related to numerical methods is to try for balanced approximations. Generally the master field is well approximated by a FEM discretization, whereas associated slave fields, such as gradients and fluxes in the $\Pi_{TE} [u]$ functional, may be comparatively inaccurate. This is because differentiation, represented here by operations such as $g^u = \nabla u$, amplifies errors. A functional in which u and q are master fields would be more balanced in that regard. A more general motivation for mixed functionals is the development of hybrid functionals, a topic covered later in this course.

The prototype of mixed functionals is the famous Hellinger-Reissner (HR) functional of linear elasticity, in which both displacements and stresses are independently varied. We proceed to derive now the analogous functional for the Poisson equation.

§ 7.4.1. The Weak Form

The development of the single-field functional in §7.3 started from the identification of weak links, followed by picking a master field. In the case of a multifield functional, the process should be reversed because “multiple slaves” appear, which forces us to draw more boxes.

The first decision is: select the masters. Here we pick u and q. Then weaken selected links. The appropriate choices for an HR-like principle are shown in Figure 7.5. Three links are weakened. They are are BE, FBC, and the connection between the slave gradients g^u and g^q, denoted as GG. Links PBC, KE and CE are kept strong.

Still another motivation in FEM applications is the reduction of interelement continuity requirements in problems of beams, plates and shells.
The weak link residuals are \(r_{BE} = \nabla \cdot k \nabla u - s \), \(r_{FBC} = k \nabla u - \hat{q} \), and \(r_{GG} = g^u - g^q = \nabla u - k^{-1} q \), respectively. The weighted residuals, expressed in terms of the masters, are

\[
R_{BE} = \int_V (\nabla \cdot q - s) w_{BE} \, dV, \quad R_{FBC} = \int_{S_q} (q \cdot n - \hat{q}) w_{FBC} \, dS \\
R_{GG} = \int_V (g^u - g^q) w_{GG} \, dV = \int_V (\nabla u - k^{-1} q) w_{GG} \, dV.
\] (7.14)

§7.4.2. Variational Statement

Equations (7.14) can be converted into a variational statement by replacing

\[w_{BE} \to -\delta u, \quad w_{FBC} \to \delta u, \quad w_{GG} \to \delta q. \] (7.15)

Why these choices? The key rule is: work pairing. As explained in ?, fields such as \(\nabla \cdot q \) and \(s \) should be paired with \(\delta u \) in \(V \) so that their product, once integrated to build a functional, represents work or energy. Consequently, \(w_{BE} \) must be \(\pm \delta u \), and similarly for the other weight functions. The choice of the right sign is not that crucial, since signs can be tweaked to get cancellations on total-variations later.

Upon substitution, the \(R \)'s are renamed as variation components \(\delta \Pi_{BE}, \delta \Pi_{FBC}, \) and \(\delta \Pi_{GG} \) of an alleged functional \(\Pi[u, q] \):

\[
\delta \Pi_{BE} = \int_V (\nabla \cdot q + s) \, \delta u \, dV = \int_V (q \, \delta \nabla u + s \, \delta u) \, dV - \int_{S_q} q \cdot n \, \delta u \, dS, \\
\delta \Pi_{FBC} = \int_{S_q} (q \cdot n - \hat{q}) \, \delta u \, dS, \quad \delta \Pi_{GG} = \int_V (\nabla u - k^{-1} q) \, \delta q \, dV.
\] (7.16)

The foregoing transformation of \(\delta \Pi_{BE} \) comes from applying the divergence theorem to \(\nabla \cdot q \, \delta u \), as worked out at the end of §7.5: \(-\int_V \nabla \cdot q \, \delta u \, dV = \int_V q \cdot \delta \nabla u \, dV - \int_{S_q} q \cdot n \, \delta u \, dS \).

§7.4.3. The Variational Form

Adding the three weak link contributions gives

\[
\delta \Pi = \delta \Pi_{BE} + \delta \Pi_{FBC} + \delta \Pi_{GG} \\
= \int_V [(q \, \delta \nabla u + (\nabla u - k^{-1} q) \, \delta q + s \, \delta u) \, dV - \int_{S_q} \hat{q} \, \delta u \, dS.
\] (7.17)

This is the variation of the mixed functional

\[
\Pi_{HR}[u, q] = \int_V (q \cdot \nabla u - \frac{1}{2} k^{-1} q \cdot q) \, dV + \int_V s u \, dV - \int_{S_q} \hat{q} \, u \, dS \\
= \int_V \left[q_1 \frac{\partial u}{\partial x_1} + q_2 \frac{\partial u}{\partial x_2} + q_3 \frac{\partial u}{\partial x_3} - \frac{1}{2k} (q_1^2 + q_2^2 + q_3^2) \right] \, dV \\
+ \int_V s u \, dV - \int_{S_q} \hat{q} \, u \, dS.
\] (7.18)
in which the first term, which characterizes internal energy, is rewritten in full component notation in the second line of (7.18).

The variational principle is

$$\delta \Pi_{HR} = 0.$$ \hfill (7.19)

where the variations are taken with respect to \(u\) and \(q\).

§7.5. The Divergence Theorem

Specialized forms of Gauss’ divergence theorem have been used on the way to the VF. In this section we summarize some useful forms in 3D. Assume that \(a\) is a differentiable 3-vector field in \(V\). Begin from the canonical form of the theorem, which says that the vector divergence over a volume is equal to the vector flux over the surface:

$$\int_V \nabla \cdot a \, dV = \int_S a \cdot n \, dS$$ \hfill (7.20)

Here \(\nabla \cdot a\) as usual denotes the vector divergence \(\text{div} a = \partial a_1/\partial x_1 + \partial a_2/\partial x_2 + \partial a_3/\partial x_3\).

Plug in \(a = \phi \, b\), where \(\phi\) is a scalar function and \(b\) a 3-vector field, both being differentiable:

$$\int_V (\phi \nabla \cdot b + \nabla \phi \cdot b) \, dV = \int_S \phi b \cdot n \, dS. \hfill (7.21)$$

Next, if \(b\) is a gradient vector of the form \(b = \alpha \nabla \psi\), where \(\alpha\) and \(\psi\) are scalar functions, the second being twice differentiable, (7.21) becomes

$$\int_V (\phi \nabla \cdot (\alpha \nabla \psi) + \nabla \phi \cdot (\alpha \nabla \psi)) \, dV = \int_S \phi \alpha \nabla \psi \cdot n \, dS. \hfill (7.22)$$

This form can be applied to the Poisson equation \(\nabla \cdot (k \nabla u) = s\) by substituting \(\phi \rightarrow -\delta u\), (the minus sign gives a nicer formula below) \(\psi \rightarrow u\) and \(\alpha \rightarrow k\) to get

$$- \int_V \left(\delta u \nabla \cdot (k \nabla u) + \nabla \delta u \cdot (k \nabla u) \right) \, dV = - \int_S k \nabla u \cdot n \, dS. \hfill (7.23)$$

Rearranging terms, separating the surface integral in two portions, and noting that \(\delta u = 0\) on \(S_u\) (because \(u = \hat{u}\) there) gives

$$- \int_V \nabla \cdot (k \nabla u) \, \delta u \, dV = \int_V k \nabla u \cdot \nabla \delta u \, dV - \int_S k \nabla u \cdot n \, \delta u \, dS$$

$$= \int_V k \nabla u \cdot \nabla \delta u \, dV - \int_{S_u} k \nabla u \cdot n \, \delta u \, dS - \int_{S_q} k \nabla u \cdot n \, \delta u \, dS \hfill (7.24)$$

$$= \int_V k \nabla u \cdot \delta \nabla u \, dV - \int_{S_u} k \nabla u \cdot n \, \delta u \, dS.$$

Note that \(\delta\) and \(\nabla\) commute: \(\nabla \delta u = \delta \nabla u\), a fact used in the last equation. This relation is used for the development of the primal functional in §7.3.

Another useful formula for the mixed functional development in §7.4 is obtained by applying the divergence theorem to \(\nabla \cdot q \delta u\):

$$\int_V \nabla \cdot q \, \delta u \, dV + \int_V q \cdot \nabla \delta u \, dV = \int_S q \cdot n \, \delta u \, dS = \int_{S_q} q \cdot n \, \delta u \, dS. \hfill (7.25)$$

Again \(\delta\) and \(\nabla\) can be switched in the second term.
§7.6. Textbooks and Monographs on Variational Methods

There is a very large number of books that focus on variational methods and their applications to engineering and physics. Such material may be also found in supplementary form in books with primary focus on more general subjects, such as mathematical physics, or specialized areas such as finite elements.

The following list was prepared in 1993 for the Variational Methods in Mechanics (VMM) course, but is also relevant to AFEM. It was updated in 1999 and 2003 with references to Internet bookstores. It collects only books that the writer has examined, at least superficially.

§7.6.1. Textbooks Used in VMM

B. D. Vujanovic and S. E. Jones, *Variational Methods in Nonconservative Phenomena*, Academic Press, 1989. As of this writing the only textbook that treats new, nonstandard techniques for the title subject, such as the method of vanishing parameters, time-dependent Lagrangians, and noncommutative variations. Exposition uneven, with flashes of brilliance followed by unending pedestrian examples. Out of print. Worth buying on the Internet despite cost (over $120) if material covered can help your doctoral work.

§7.6.2. A Potpourri of References

The following are listed by (first) author’s alphabetic order.

R. Courant and D. Hilbert, *Methods of Mathematical Physics*, 2 vols, Interscience Pubs, 1962. Periodically reprinted. Although a universally touted classical reference, it is now antiquated in style (first editions were written in the 1920s). Still useful as reference material and source to developments in the early half of the XX century.

7 Many of the books listed here are out of print. The advent of the Internet has meant that it is easier to surf for used books across the world without moving from your desk. There is a fast search engine for comparing prices at URL http://www3.addall.com: go to the “search for used books” link. Amazon.com has also a search engine, which is badly organized, confusing and full of unnecessary hype, but links to online reviews. [Since about 2008, old scanned books posted online on Google are an additional potential source; free of charge if the useful pages happen to be displayed.]
H. T. Davis, *Introduction to Nonlinear Differential and Integral Equations*, Dover, 1962. Periodically reprinted but also easy to find in the Internet as used book. Contains one chapter (14) on standard variational calculus, which gives a nice and quick introduction to the subject. If you have only a couple of hours to learn SVC in 20 pages, this is the book. Although certainly old, it feels more modern than some overhyped “classics”.

C. Fox, *An Introduction to the Calculus of Variations*, Oxford, 1963, in Dover since 1987. Periodically reprinted, easily found as used book, inexpensive. Good points: extensive coverage of sufficiency conditions, conjugate points and transversality conditions, extensive treatment of dynamics and especially Hamilton’s principle; good choice of examples. Bad points: antiquated terminology (e.g., the term “natural boundary conditions” never appears), poor organization, no bibliography, skimpy index.

C. W. Misner, K. Thorne and J. A. Wheeler, *Gravitation*, W. H. Freeman, San Francisco, 1973. Although devoted to general relativity and cosmology, a fun book to peruse through. At 8” x 10” x 2.5” and 1279 pages, it can be used to improve your upper body strength too. Still in print, lists for $84 new. Has nice chapters on use of Hamilton-like variational principles. Here is an online review posted in Amazon.com:

“...a very good book... it’s so massive you can measure its gravitational field. Yes, people refer to it as “the phone book.”
 But all joking aside, as an undergraduate who is very curious about general relativity, I must say that this textbook has done more for me than any other. I’ve gotten occasional help from other books (Wald, Weinberg, etc.) but this is the one that I really LEARN from. There’s more physical insight in this book than any I’ve yet seen, and the reading is truly enjoyable. One great thing is the treatment of tensors. I knew next to nothing about tensors coming into the book, but the book assumes very little initial knowledge and teaches you the needed math as you go along. This book is truly a model for anyone who wants to write a textbook. Nothing I’ve seen even comes close.”

P. M. Morse and H. Feshbach, *Methods of Theoretical Physics*, 2 vols, McGraw-Hill, 1953. Same comments as for Courant-Hilbert. As the title says, it is oriented to physics, not engineering. Good treatment of adjoint and “mirror” systems. Out of print; can be bought on the Internet but the set is expensive (over $500).

concentrate on the Inverse Problem of Lagrangian Mechanics. Unfortunately it is poorly written, disorganized, egocentric, wordy and repetitious, with many typos. For the patient specialist only.

M. M. Vainberg, *Variational Methods for the Study of Nonlinear Operators*, Holden-Day, 1964. An advanced monograph highly touted when it appeared since it was one of the first books covering nonlinear variational operators and the Newton-Kantorovich solution method. Requires good command of functional analysis, else forget it. Translated from Russian, but the job was poorly done. Out of print.

K. Washizu, *Variational Methods in Elasticity and Plasticity*, Pergamon Press, 1972 (2nd expanded edition 1981). With an encyclopedic coverage of the title subject, this is a good reference monograph. Drawbacks are the flat exposition style (there is no unifying, lifting theme a la Lanczos) and the cost (since it is out of print — Washizu passed away in 1985 — used copies, if found on the Internet, go for over $200).

W. Yourgrau and S. Mandelstam, *Variational Principles in Dynamics and Quantum Theory*, Dover, 1968. A potpourri of history, philosophy and mathematical physics brewed in a small teacup (only 200 pages). In depth treatment of Hamilton’s principle, which is fundamental in quantum physics. Two chapters on quantum mechanics and one on fluid mechanics including He superconductivity. Occasionally sloppy and effusive but worth the modest admission price ($7 to $10 used; can be bought new at Amazon for $15.).

§7.6.3. Variational Methods as Supplementary Material

In addition to the foregoing, many books in mechanics give “recipe” introductions to variational methods. One of the best is the excellent textbook, unfortunately out of print,8 by Fung:

Gurtin’s article in the Encyclopedia of Physics gives a terse but rigorous coverage of the classical principles of linear elasticity, including the famous Gurtin convolution-type principles for initial-value problems in dynamics:

Finite element books always provide some coverage ranging from superficial to adequate through pedantic to insufferable. The 4th edition of Zienkiewicz-Taylor is substantially improved, going from superficial (with noticeable mistakes in the previous 3 editions) to adequate, thanks to Bob Taylor’s contribution:

The coverage in the popular Cook-Malkus-Plesha’s textbook is elementary but appropriate for the intended audience:

8 Much of Fung’s material was recently “modernized” as a reasonably priced new book co-authored by Y. C. Fung and P. Tong, *Classic and Computational Solid Mechanics*, World Scientific Pub. Co., 2001. This has been used as text for Mechanics of Aerospace Structures (in Aero) and Mechanics of Solids (in ME). According to the instructors, student reaction has been strongly negative. Shows how easy is to munge a good oldie.

9 A 5th edition in several volumes has appeared in the late 1990s.
Chapter 7: WEAK AND VARIATIONAL FORMS OF THE POISSON EQUATION

R. D. Cook, D. S. Malkus and M. E. Plesha, Concepts and Application of Finite Element Methods, 3rd ed., Wiley, New York, 1989. (More recent editions have appeared but have not improved on the 3rd.)

The most readable FEM-oriented treatment from a mathematical standpoint is still the excellent monograph by Strang and Fix:

Engineers should avoid any “FEM math” book other than Strang-Fix unless they are comfortable with advanced functional analysis.
Homework Exercises for Chapter 7
Weak and Variational Forms of the Poisson Equation

For an explanation of the Exercise ratings (given in brackets at the start of each one) see page 2 of the Homework Guidelines posted on the course web site.

EXERCISE 7.1 [A:10] Convert the functional Π_{TPE} derived in §7.3 into the corresponding functional of the heat conduction equation treated in §2.3. Hint: read footnote 1 of this Chapter, and be careful with signs.

EXERCISE 7.2 [A:20] Consider the generic Poisson problem of §7.2. Suppose that the boundary S splits into three parts: S_u, S_q, and S_r so $S : S_u \cup S_q \cup S_r$. The BCs on S_u and S_q are the classical PBC and FBC: $u = \hat{u}$ and $q_n = \hat{q}$, respectively. On S_r the boundary condition is

$$q_n = \chi (u - u_0) \quad \text{on} \ S_r, \quad (E7.1)$$

where u_0 and χ are given; both may be functions of position on S_r. This is called a Robin boundary condition or RBC. For the heat conduction problem, (E7.1) models a convection boundary condition: a moving fluid contacting the body on S_r dissipates or conveys heat.\(^{10}\)

(a) Show that expanding Π_{TPE} with a surface term $\pm \int_{S_r} \chi (u-u_0)^2 \ dS$ accounts for this boundary condition. Find out which sign fits.

(b) Account for the RBC (E7.1) in the extended SF Tonti diagram.\(^{11}\)

EXERCISE 7.3 [A:20] Consider the thermal conduction problem with absolute temperature T (in Kelvin) as primary variable. Suppose that the boundary S splits into three parts: S_T, S_q, and S_r so $S : S_T \cup S_q \cup S_r$. The BCs on S_T and S_q are the classical PBC and FBC: $T = \hat{T}$ and $q_n = \hat{q}$, respectively. On S_r we have a radiation boundary condition:

$$q_n = \sigma (T^4 - T_r^4) \quad \text{on} \ S_r, \quad (E7.2)$$

where T_r is a given reference temperature (for orbiting space structures, $T_r \approx 3^\circ K$) and σ is a given coefficient that characterizes radiational heat emission per unit of area.

Show that (E7.2) can be exactly linearized as $q_n = h_r (T - T_r)$, where h_r is a function of σ, T and T_r. Find h_r and explain how this trick can make (E7.2) fit into the Robin BC treated in the previous Exercise.\(^{12}\)

EXERCISE 7.4 [A:20] Show that the Π_{HR} mixed functional derived in §7.4 can be expanded with a term $\pm \int_{S_u} q_n (u - \hat{u}) \ dS$ to account for weakening the PBC link: $u = \hat{u}$ on S_u (find out which sign fits).

\(^{10}\) More precisely, (E7.1) is a linearization of an actual convection condition. If the flow is turbulent (e.g. the Earth atmosphere) the actual condition is nonlinear.

\(^{11}\) The answer is not unique; try something. Whatever you come up with, it seems inevitably that it will mess up the neat form of the diagram.

\(^{12}\) The resulting functional is called a Restricted Variational Form because h_r must be kept fixed during variation. This form can be used as a basis for numerically solving this highly nonlinear problem, which is important in Aerospace, Environmental and Mechanical Engineering, by Newton iteration.