1. Evaluate the integrals:
(a) \(\int e^x \cos(x) \, dx \)
(b) \(\int \frac{x}{x^2 - 2x - 3} \, dx \)
(c) \(\int \frac{\sqrt{1 - x^2}}{x^4} \, dx \)

2. Determine if the integrals converge or diverge:
(a) \(\int_0^1 (x+1)(x^2+2x)^{-1/2} \, dx \)
(b) \(\int_1^\infty \frac{1}{e^x + 2x} \, dx \)

3. Let \(R \) be the region in the first quadrant bounded by \(x = y \) and \(x = \sqrt{y} \).
(a) Find the volume of the solid generated by rotating the region \(R \) about the \(y \)-axis using the Washer Method.
(b) Set up, but do not solve, an integral to find the volume of the solid generated by rotating the region \(R \) about the \(y \)-axis using the Shell Method.

4. Find the volume of the solid generated by revolving the region in the first quadrant bounded by \(y = e^{-x}, x = 1 \) and the coordinate axes about the line \(x = 1 \).

5. Find the centroid of the region bounded by \(y = e^x, x = 0, y = 0 \) and \(x = 1 \).

6. Solve the differential equations:
(a) \(\frac{dy}{dx} + 2xy = 2x \)
(b) \((x^2 + 3x)y' = 1 \cos(y) \)

7. Determine if the given sequences converge or diverge:
(a) \(a_n = \frac{\ln(n^2)}{n} \)
(b) \(a_n = \sqrt{2n + 1} \)

8. Determine if the given series converge absolutely, conditionally or diverge. Determine the sum when possible. Show all work.
(a) \(\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n 3^n} \)
(b) \(\sum_{n=1}^{\infty} \frac{2^n 3^n}{n^n} \)
(c) \(\sum_{n=1}^{\infty} \tan(1/n) \)
(d) \(\sum_{n=1}^{\infty} \frac{-2}{n^2 + n} \)
(e) \(\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n^2 - 1}} \)

9. Find the interval of convergence of:
(a) \(\sum_{n=0}^{\infty} \frac{(n+1)x^{2n-1}}{4^n} \)
(b) \(\sum_{n=0}^{\infty} \frac{(-1)^n(x-1)^{n+1}}{n+1} \)

10. Find the Maclaurin Series of:
(a) \(\sin^2(x) \)
(b) \(\frac{1}{(2 + x)^3} \)

11. (a) Use a series to approximate \(\int_0^1 \frac{\tan^{-1}(x)}{x} \, dx \) with an error of magnitude less than 0.0125. (Hint: 0.0125 = 1/80.)
(b) What is the error of this approximation?

12. Use series to evaluate \(\lim_{x \to 0} \frac{\sin(x) - x + x^3/6}{2x^5} \)

13. (a) Find the Taylor polynomial of order 2, \(T_2(x) \), of \(f(x) = x^{3/4} \) centered at \(a = 16 \).
(b) Use Taylor’s Formula to estimate the error of the approximation in part (a) if \(15 \leq x \leq 17 \).

14. (a) Set-up the Trapezoidal Rule approximation \(T_6 \) of the integral \(\int_0^3 f(x) \, dx \) in terms of \(f(x) \).
(b) Set-up the Midpoint Rule approximation \(M_6 \) of the integral \(\int_0^3 f(x) \, dx \) in terms of \(f(x) \).
(c) If it is know that \(-4 \leq f''(x) \leq 1 \) for all \(x \), what is the error involved in approximating the integral \(\int_0^3 f(x) \, dx \) by \(M_7 \)? by \(T_5 \)?

15. Find a Cartesian equation for the given parametric equations and identify the shape of the graph:
(a) \(x = t, \ y = -\sqrt{1+t^2}, \ t > 0 \)
(b) \(x = 2 \sinh(t), \ y = 2 \cosh(t), \ -\infty < t < \infty \)
16. Given the curve \(C: x = \cos(t) + t \sin(t), \quad y = \sin(t) - t \cos(t) \) for \(0 \leq t \leq \pi/2 \), (a) find the length of curve \(C \) and (b) set-up, but do not solve, an integral to find the surface area of the surface generated by rotating the curve \(C \) about the \(x \)-axis.

17. Find the length of the polar curve \(r = \theta^2 \) for \(0 \leq \theta \leq \sqrt{5} \).

18. Given the curve \(C: x = \sec(t), \quad y = \tan(t) \), find \(\frac{d^2y}{dx^2} \) at \(t = \pi/6 \).

19. Find the slope of \(r = -1 + \cos(\theta) \) at \(\theta = \pi/2 \).

20. Find the area of the region enclosed by the inner loop of the curve \(r = 1 + 2 \sin(\theta) \).

21. Find the area of the region shared by \(r = 1 \) and \(r = 2 \sin(\theta) \).

22. Find the area of the region inside the rose curve \(r = 2 \cos(2\theta) \) and outside the circle \(r = 1 \).

23. Sketch the graph with vertices, foci and asymptotes: (a) \(\frac{(x-2)^2}{4} + \frac{(y-3)^2}{9} = 1 \) (b) \(\frac{y^2}{e^2} - \frac{x^2}{\pi^2} = 1 \)