*Solve 2.3: 2 b

*Solve 2.3: 5a,c; in 5c use bipolar coordinate angles (as defined in problem 5b):
\[z + 1 = r_1 e^{i\theta_1}, z - 1 = r_2 e^{i\theta_2} \]
where \(0 \leq \theta_j < 2\pi, j = 1, 2 \) so that there is a branch cut on the
\(x \)-axis: \(-1 \leq x \leq 1\)

*Solve: From the basic definition of complex integration in section 2.4, evaluate the
integral \(\oint_C f(z)dz \) where \(C \) is the parameterized unit circle enclosing the origin,
\(C: x(t) = \cos t, y(t) = \sin t \) where \(f(z) \) is given by:

a) \(z/\bar{z} \)

b) \((2z - 1)/z^2 \)

*Let \(C \) be a square with diagonal corners at the origin and at \(1 + i \). From the basic
definition of complex integration in section 2.4, evaluate \(\oint_C f(z)dz \) where \(f(z) \) is given by:

a) \(z \)

b) \(\bar{z} \)

*Solve 2.4: 7

*Evaluate the integral \(\oint_C f(z)dz \) where \(C \) is the unit circle (centered at the origin) where
\(f(z) \) is given by:

a) \(e^{2iz} \)

b) \((z^2 + 1)/z^3 \)

You can use Cauchy’s Theorem and, if useful, deformation of the contour.

*Solve (XC) 2.5: 6