1. (36 points) Evaluate the following integrals. Simplify your answers.

(a) \[\int_7^{\sqrt{2}} \frac{\sqrt{t^2 - 49}}{t} \, dt\]

(b) \[\int_1^4 x^{1/2} \ln(x) \, dx\]

(c) \[\int \frac{\sin(x)}{\cos^2(x) - 3 \cos(x)} \, dx\]

Solution:

(a) Trig substitution. Let \(t = 7 \sec \theta\). Then \(dt = 7 \sec \theta \tan \theta \, d\theta\) and \(\sqrt{t^2 - 49} = \sqrt{49 \sec^2 \theta - 49} = \sqrt{49 \tan^2 \theta} = 7 \tan \theta\). We can convert the limits \(x = 7\) and \(x = 7\sqrt{2}\) to \(\theta = 0\) and \(\theta = \pi/4\), respectively.

\[
\int_7^{\sqrt{2}} \frac{\sqrt{t^2 - 49}}{t} \, dt = \int_0^{\pi/4} \frac{7 \tan \theta}{7 \sec \theta} (7 \sec \theta \tan \theta) \, d\theta = \int_0^{\pi/4} 7 \tan^2 \theta \, d\theta \\
= \int_0^{\pi/4} 7 (\sec^2 \theta - 1) \, d\theta = \left[7(tan \theta - \theta)\right]_0^{\pi/4} \\
= 7 \left(1 - \frac{\pi}{4}\right)
\]

(b) Integration by parts: Let \(u = \ln x\), \(du = (1/x) \, dx\), \(dv = x^{1/2} \, dx\) and \(v = (2/3)x^{3/2}\). Then:

\[
\int_1^4 x^{1/2} \ln(x) \, dx = \left[\frac{2}{3}x^{3/2} \ln x\right]_1^4 + \int_1^4 \frac{2}{3}(x^{3/2}) \, dx \\
= \frac{2}{3}(4)^{3/2} \ln 4 - \left[\frac{2}{3} \cdot \frac{2}{3} x^{3/2}\right]_1^4 \\
= \frac{16}{3} \ln 4 - \frac{4}{9} (4^{3/2} - 1) \\
= \frac{16}{3} \ln 4 - \frac{28}{9}
\]
(c) Let \(u = \cos(x) \) then we have
\[
\int \frac{\sin(x) \, dx}{\cos^2(x) - 3 \cos(x)} = \int \frac{-1}{u(u - 3)} \, du = \frac{1}{3} \int \frac{1}{u} \, du - \frac{1}{3} \int \frac{1}{u - 3} \, du = \frac{1}{3} \ln |u| - \frac{1}{3} \ln |u - 3| + C
\]
so,
\[
\int \frac{\sin(x) \, dx}{\cos^2(x) - 3 \cos(x)} = \frac{1}{3} \ln \left| \frac{\cos(x)}{\cos(x) - 3} \right| + C
\]

2. (14 points) For this problem, let
\[I = \int_0^1 \frac{1}{1 + x^2} \, dx. \]

(a) Calculate the value of \(I \).

(b) Now, estimate \(I \) using the trapezoidal approximation \(T_2 \).

(c) In this problem, \(f(x) = \frac{1}{1 + x^2} \), \(f''(x) = \frac{2(3x^2 - 1)}{(1 + x^2)^3} \) and \(f^{(3)}(x) > 0 \) on \((0, 1)\). Use this information to find an error estimate for \(T_2 \). Briefly explain your reasoning.

(d) Express \(\pi \) in terms of \(I \) using your answer from part (a). Find an approximate value of \(\pi \) using your answer from part (b). Simplify your answer. (Remark: Note that we could use this method to estimate the value of \(\pi \) numerically to greater precision by using larger values of \(n \).)

Solution:

(a) \(I = \int_0^1 \frac{1}{1 + x^2} \, dx = \left[\arctan(x) \right]_0^1 = \frac{\pi}{4} \)

(b) If \(n = 2 \) subintervals and \(\Delta x = 1/2 \), then
\[
T_2 = \frac{\Delta x}{2} \left(f(0) + 2f \left(\frac{1}{2} \right) + f(1) \right) = \frac{1}{2} \cdot \frac{1}{2} \left(1 + 2 \cdot \frac{4}{5} + 1 \right) = \frac{31}{40}
\]

(c) Since \(f^{(3)}(x) > 0 \), \(f'' \) is an increasing function. At the left endpoint \(f''(0) = -2 \) and at the right endpoint \(f''(1) = 1/2 \). Let \(K \) equal the maximum value of \(|f''| = 2 \).
\[
E_T \leq K(b - a)^3 = \frac{2(1)^3}{12(2)^2} = \frac{1}{24}
\]

(d) In part (a) we found that \(I = \pi/4 \) so \(\pi = 4I \) and an approximate value of \(\pi \) is \(4 \times \frac{31}{40} = 3.1 \).

3. (16 points) Determine whether the following integrals are convergent or divergent. Explain your reasoning.

(a) \(\int_0^\infty \frac{1}{x^2} \, dx \)

(b) \(\int_1^\infty \frac{x^2}{x^5 + 2} \, dx \)

Solution:

(a) For \(\int_0^\infty \frac{1}{x^2} \, dx \) to converge, both of the integrals \(\lim_{a \to 0^+} \int_a^1 \frac{1}{x^2} \, dx \) and \(\lim_{t \to \infty} \int_1^t \frac{1}{x^2} \, dx \) must converge. We see that:
\[
\lim_{a \to 0^+} \int_a^1 \frac{1}{x^2} \, dx = \lim_{a \to 0^+} \left[-\frac{1}{x} \right]_a^1 = \lim_{a \to 0^+} \left[-1 + \frac{1}{a} \right]
\]
which diverges. Therefore, the original integral, \(\int_0^\infty \frac{1}{x^2} \, dx \) diverges. (Note, the second integral, \(\lim_{t \to \infty} \int_1^t \frac{1}{x^2} \, dx \) does converge. But, once we found that the first integral diverged, we didn’t need to look at the second integral.)
(b) We note that for \(x \geq 1 \), we have \(0 \leq \frac{x^2}{x^5 + 2} \leq \frac{x^2}{x^3} = \frac{1}{x^3} \). Also,

\[
\int_1^\infty \frac{1}{x^3} \, dx = \lim_{t \to \infty} \int_1^t \frac{1}{x^3} \, dx = \lim_{t \to \infty} \left[\frac{-1}{2x^2} \right]_1^t = \lim_{t \to \infty} \left[\frac{-1}{2t^2} + \frac{1}{2} \right] = \frac{1}{2}
\]

Therefore, by the comparison test, the original integral converges.

4. (20 points) Four unrelated, short answer questions. For the True/False questions, if the statement is true, write the word TRUE and give a short explanation of how you know it is true. If the statement is false, write the word FALSE and give a counterexample that shows the statement is false.

(a) If \(f(x) \leq g(x) \) and \(\int_1^\infty g(x) \, dx \) converges then \(\int_1^\infty f(x) \, dx \) also converges. True or False? Explain.

(b) If \(f \) is a continuous, decreasing function on \([1, \infty) \), and if \(\lim_{x \to \infty} f(x) = 0 \) then \(\int_1^\infty f(x) \, dx \) is convergent. True or False? Explain.

(c) If \(x = 3 \sin \theta \) is used as a trigonometric substitution for \(\int f(x) \, dx \) and the result is \(\int f(x) \, dx = -\cot \theta - \theta + C \), what is the final answer in terms of \(x \)? Simplify your answer.

(d) Give the form of the partial fraction decomposition of the rational function \(\frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x} \). Do not find the values of the coefficients.

Solution:

(a) False. For example, suppose \(f(x) = -1/x \) and \(g(x) = 1/x^2 \). Then, \(f(x) = -1/x \leq 1/x^2 = g(x) \) for all \(x \geq 1 \). And, \(\int_1^\infty g(x) \, dx \) converges but \(\int_1^\infty f(x) \, dx \) diverges.

(b) False. Consider the function \(f(x) = 1/x \) with domain \([1, \infty) \). On this domain, \(f(x) = 1/x \) is continuous and decreasing and \(\lim_{x \to \infty} f(x) = 0 \). However, \(\int_1^\infty 1/x \, dx \) diverges.

(c) Since \(\sin \theta = x/3 \), you can set up a reference triangle with the opposite side having length \(x \) and the hypotenuse length 3. Then, the adjacent side is \(\sqrt{9 - x^2} \), so we have \(\cot \theta = \frac{\sqrt{9 - x^2}}{x} \) and we obtain:

\[
\int f(x) \, dx = -\frac{\sqrt{9 - x^2}}{x} - \sin^{-1}\left(\frac{x}{3}\right) + C
\]

(d) First note that \(2x^3 + 3x^2 - 2x = x(2x - 1)(x + 2) \). Then,

\[
\frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x} = \frac{x^2 + 2x - 1}{x(2x - 1)(x + 2)} = \frac{A}{x} + \frac{B}{2x - 1} + \frac{C}{x + 2}
\]

5. (14 points) Find the area of the shaded region between the graphs of \(f(x) = \sin^2(x) \) and \(g(x) = \cos^2(x) \) in the figure below.
Solution: Find the points of graph intersection:

\[
\sin^2(x) = \cos^2(x) \\
\cos^2(x) - \sin^2(x) = 0 \\
\cos(2x) = 0 \\
2x = \frac{\pi}{2}, \frac{3\pi}{2} \\
x = \frac{\pi}{4}, \frac{3\pi}{4}
\]

We have \(\sin^2(x) \geq \cos^2(x) \) for \(\pi/4 \leq x \leq 3\pi/4 \). Then,

\[
\text{Area} = \int_{\pi/4}^{3\pi/4} (\sin^2(x) - \cos^2(x)) \, dx \\
= -\int_{\pi/4}^{3\pi/4} \cos(2x) \, dx \\
= -\left[\frac{1}{2} \sin(2x) \right]_{\pi/4}^{3\pi/4} \\
= -\frac{1}{2} \left[\sin \left(\frac{3\pi}{2} \right) - \sin \left(\frac{\pi}{2} \right) \right] \\
= -\frac{1}{2} [-1 - 1] = 1
\]

Some Trigonometric identities

\(2 \cos^2(x) = 1 + \cos(2x) \)
\(2 \sin^2(x) = 1 - \cos(2x) \)
\(\sin(2x) = 2 \sin(x) \cos(x) \)
\(\cos(2x) = \cos^2(x) - \sin^2(x) \)

Inverse Trigonometric Integral Identities

\[
\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1}(u/a) + C, \quad u^2 < a^2 \\
\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1}(u/a) + C \\
\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \sec^{-1}|u/a| + C, \quad u^2 > a^2
\]

Midpoint Rule

\[
\int_a^b f(x) \, dx \approx \Delta x [f(\bar{x}_1) + f(\bar{x}_2) + \cdots + f(\bar{x}_n)] \quad \text{where} \quad \Delta x = \frac{b - a}{n} \quad \text{and} \quad \bar{x}_i = \frac{x_{i-1} + x_i}{2}
\]
\[|E_M| \leq \frac{K(b - a)^3}{24n^2}. \]

Trapezoidal Rule

\[
\int_a^b f(x) \, dx \approx \frac{\Delta x}{2} [f(x_0) + 2f(x_1) + \cdots + 2f(x_{n-1}) + f(x_n)] \quad \text{where } \Delta x = \frac{b - a}{n}
\]

and \(|E_T| \leq \frac{K(b - a)^3}{12n^2}\).