On the front of your bluebook, please write: a grading key, your name, student ID, your lecture number and instructor. This exam is worth 100 points and has 5 questions on both sides of this paper.

- Include this exam sheet in your bluebook. However, nothing on this exam sheet will be graded. Make sure all of your work is in your bluebook.
- **Show all work!** Answers with no justification will receive no points.
- Please begin each problem on a new page.
- No notes or papers, calculators, cell phones, or electronic devices are permitted.

1. (36 points) Evaluate the following integrals. Simplify your answers.
 (a) \[\int_{7}^{\sqrt{2}} \frac{\sqrt{t^2 - 49}}{t} \, dt \]
 (b) \[\int_{1}^{4} x^{1/2} \ln(x) \, dx \]
 (c) \[\int \frac{\sin(x)}{\cos^2(x) - 3 \cos(x)} \, dx \]

2. (14 points) For this problem, let \(I = \int_{0}^{1} \frac{1}{1 + x^2} \, dx \).
 (a) Calculate the value of \(I \).
 (b) Now, estimate \(I \) using the trapezoidal approximation \(T_2 \).
 (c) In this problem, \(f(x) = \frac{1}{1 + x^2} \), \(f''(x) = \frac{2(3x^2 - 1)}{(1 + x^2)^3} \) and \(f^{(3)}(x) > 0 \) on \((0, 1)\). Use this information to find an error estimate for \(T_2 \). Briefly explain your reasoning.
 (d) Express \(\pi \) in terms of \(I \) using your answer from part (a). Find an approximate value of \(\pi \) using your answer from part (b). Simplify your answer. (Remark: Note that we could use this method to estimate the value of \(\pi \) numerically to greater precision by using larger values of \(n \).)

3. (16 points) Determine whether the following integrals are convergent or divergent. Explain your reasoning.
 (a) \[\int_{0}^{\infty} \frac{1}{x^2} \, dx \]
 (b) \[\int_{1}^{\infty} \frac{x^2}{x^5 + 2} \, dx \]

4. (20 points) Four unrelated, short answer questions. For the True/False questions, if the statement is true, write the word TRUE and give a short explanation of how you know it is true. If the statement is false, write the word FALSE and give a counterexample that shows the statement is false.
 (a) If \(f(x) \leq g(x) \) and \(\int_{1}^{\infty} g(x) \, dx \) converges then \(\int_{1}^{\infty} f(x) \, dx \) also converges. True or False? Explain.
 (b) If \(f \) is a continuous, decreasing function on \([1, \infty)\), and if \(\lim_{x \to \infty} f(x) = 0 \) then \(\int_{1}^{\infty} f(x) \, dx \) is convergent. True or False? Explain.
 (c) If \(x = 3 \sin \theta \) is used as a trigonometric substitution for \(\int f(x) \, dx \) and the result is \(\int f(x) \, dx = -\cot \theta - \theta + C \), what is the final answer in terms of \(x \)? Simplify your answer.

TURN OVER – MORE ON THE REVERSE
(d) Give the form of the partial fraction decomposition of the rational function \(\frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x} \). Do not find the values of the coefficients.

5. (14 points) Find the area of the shaded region between the graphs of \(f(x) = \sin^2(x) \) and \(g(x) = \cos^2(x) \) in the figure below.

![Graph of \(y = \sin^2(x) \) and \(y = \cos^2(x) \)]

Some Trigonometric identities

\[
2 \cos^2(x) = 1 + \cos(2x) \\
2 \sin^2(x) = 1 - \cos(2x) \\
\sin(2x) = 2 \sin(x) \cos(x) \\
\cos(2x) = \cos^2(x) - \sin^2(x)
\]

Inverse Trigonometric integral identities

\[
\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1}\left(\frac{u}{a}\right) + C, \quad u^2 < a^2 \\
\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1}\left(\frac{u}{a}\right) + C \\
\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \sec^{-1}|u/a| + C, \quad u^2 > a^2
\]

Midpoint Rule

\[
\int_a^b f(x) \, dx \approx \Delta x [f(\bar{x}_1) + f(\bar{x}_2) + \cdots + f(\bar{x}_n)] \quad \text{where} \quad \Delta x = \frac{b-a}{n} \quad \text{and} \quad \bar{x}_i = \frac{x_{i-1} + x_i}{2} \quad \text{and} \quad |E_M| \leq \frac{K(b-a)^3}{24n^2}.
\]

Trapezoidal Rule

\[
\int_a^b f(x) \, dx \approx \frac{\Delta x}{2} [f(x_0) + 2f(x_1) + \cdots + 2f(x_{n-1}) + f(x_n)] \quad \text{where} \quad \Delta x = \frac{b-a}{n} \quad \text{and} \quad |E_T| \leq \frac{K(b-a)^3}{12n^2}.
\]