1. The following are not related:

(a) (7 pts) Differentiate \(y = \int_{2x}^{x^2} \frac{3 + t}{t^2 + 5} \, dt \) [Do not simplify.]

(b) (6 pts) Evaluate the integral \(\int (1 + \cot^2 x) \, dx \)

(c) (6 pts) Evaluate the integral \(\int \frac{7x^3 + 5x^2 - 3}{\sqrt{x}} \, dx \)

(d) (6 pts) Evaluate the integral \(\int_1^3 |x^2 - 1| \, dx \)

Solution:

(a)
\[
y = \int_1^2 1 + 5t^2 \, dt + \int_1^{2/x} 3 + t \, dt + \int_1^{2/x} 3 + t \, dt = -\int_1^{2/x} 1 + 5t^2 \, dt + \int_1^{2/x} 3 + t \, dt
\]
\[
\frac{dy}{dx} = -\frac{3 + 2x}{1 + 5(2x)^2} (2) + \frac{3 + 2/x}{1 + 5(2x)^2} \left(-\frac{2}{x^2} \right)
\]

(b) \(\int (1 + \cot^2 x) \, dx = \int \csc^2 x \, dx = -\cot x + C \)

(c)
\[
\int \frac{7x^3}{x^{1/4}} + \frac{5x^2}{x^{1/4}} - \frac{3}{x^{1/4}} \, dx = \int 7x^{11/4} + 5x^{3/4} - 3x^{-1/4} \, dx = \int 7x^{11/4} + 5x^{7/4} - 3x^{-1/4} \, dx
\]
\[
= 7 \left(\frac{4}{15} \right) x^{15/4} + 5 \left(\frac{4}{11} \right) x^{11/4} - 3 \left(\frac{4}{3} \right) x^{3/4} + C
\]
\[
= \frac{28}{15} x^{15/4} + \frac{20}{11} x^{11/4} - 4x^{3/4} + C
\]

(d) Since \(x^2 - 1 \) is only negative on the interval \((-1, 1)\) and this integral is being evaluated from \((1, 3)\), we may drop the absolute value symbols:
\[
\int_1^3 x^2 - 1 \, dx = \frac{1}{3} x^3 - x \bigg|_1^3 = \frac{20}{3}
\]

2. The following problems are not related:

(a) (12 pts) The function \(f(x) = \frac{1}{2} x^3 - 2x^2 + 3x + 5 \) has two local extrema. Estimate the value of \(x \) where one of the local extreme values of \(f(x) \) occur using one iteration of Newton’s method (in other words, find \(x_2 \)). Use \(x_1 = 0 \) as an initial approximation.

(b) (12 pts)

i. Find the area of the largest rectangle that can be inscribed in a right triangle with legs of lengths 3 cm and 4 cm respectively, if two sides of the rectangle lie along the legs.

ii. How do you know your answer is a maximum? Justify your answer based on the theories of this class.
3. (a) (6 pts) Using the definition for area using right hand endpoints,

\[A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + f(x_3)\Delta x + \cdots + f(x_n)\Delta x] \]

find an expression for the area under the curve \(y = -3x^2 + 6x \) from 0 to 2 as a limit.

Note: The following formulas may be useful:

\[
\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \quad \sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2} \right]^2
\]

(b) (6 pts) Evaluate the limit.

(c) (6 pts) Now express the area as an integral and find the average value, \(f_{avg} \).

(d) (6 pts) Find all \(c \) between \(x = 0 \) and \(x = 2 \) so that \(f(c) = f_{avg} \).

Solution:

(a) \(\Delta x = \frac{2}{n}, x_i = \frac{2i}{n} \). So we can express the area as:

\[
A = \lim_{n \to \infty} \sum_{i=1}^{n} \left[-3 \left(\frac{2i}{n} \right)^2 + 6 \left(\frac{2i}{n} \right) \right] \left(\frac{2}{n} \right)
\]

(b) Evaluating the limit in part (a) gives us:

\[
\lim_{n \to \infty} \sum_{i=1}^{n} \left[-\frac{24i^2}{n^3} + \frac{24i}{n^2} \right] = \lim_{n \to \infty} -\frac{24}{n^3} \sum_{i=1}^{n} i^2 + \frac{24}{n^2} \sum_{i=1}^{n} i
\]

\[
= \lim_{n \to \infty} \left[-\frac{24}{n^3} \left(\frac{n(n+1)(2n+1)}{6} \right) + \frac{24 n(n+1)}{2n^2} \right]
\]

\[
= \lim_{n \to \infty} \left[-\frac{4}{n^3} (2n^3 + 3n^2 + n) + 12 + \frac{12}{n} \right]
\]

\[
= \lim_{n \to \infty} \left[-8 - \frac{12}{n} - \frac{4}{n^2} + 12 + \frac{12}{n} \right] = -8 + 12 = 4
\]

(c) \(f(x) = f_0^2 - 3x^2 + 6x \ d x \). So the average value of the integral is given by:

\[
f_{ave} = \frac{1}{2} \left(-x^3 + 3x^2 \big|_0^2 \right) = \frac{1}{2} (-8 + 12) = 2
\]

(d) \(f(c) = -3c^2 + 6c \). So we need \(-3c^2 + 6c = 2 \implies -3c^2 + 6c - 2 = 0 \implies 3c^2 - 6c + 2 = 0 \). Using the quadratic formula we have \(c = 1 \pm \sqrt{\frac{5}{3}} \).
4. Let the function \(f \) be defined by \(f(x) = \int_{\frac{1}{4}}^{x} \frac{1}{t} \, dt \) for \(x > 0 \).

(a) (5 pts) What is \(f(1) \)? What is \(f'(x) \)? What is \(f'(1) \)?
(b) (5 pts) \(f \) is differentiable. Why?
(c) (6 pts) Show that \(f'(5x) = f'(x) \).
(d) (5 pts) Using the definition of \(f \), show that \(f(x + h) - f(x) = \int_{x}^{x+h} \frac{1}{t} \, dt \)
(e) (6 pts) Now suppose \(h(x) = \int_{0}^{\cos(x-2)} 3t^2 \, dt \) and \(f(s) = \int_{\pi}^{4s} h(x) \, dx \).
Find \(f''(1/2) \).

Solution:
(a) $f(1) = \int_{1}^{1} \frac{1}{t} \, dt = 0$

\[f'(x) = \frac{1}{x} \]

\[f'(1) = \frac{1}{1} = 1 \]

(b) \(f \) is differentiable because \(\frac{1}{t} \) is continuous on its domain.

(c) $f(5x) = \int_{1}^{5x} \frac{1}{t} \, dt$

\[\Rightarrow f'(5x) = \frac{1}{5x}(5) = \frac{1}{x} = f'(x) \]

(d) \(f(x + h) = \int_{1}^{x+h} \frac{1}{t} \, dt \), \(f(x) = \int_{1}^{x} \frac{1}{t} \, dt \). So therefore,

\[f(x + h) - f(x) = \int_{1}^{x+h} \frac{1}{t} \, dt - \int_{1}^{x} \frac{1}{t} \, dt = \int_{1}^{x+h} \frac{1}{t} \, dt + \int_{x}^{1} \frac{1}{t} \, dt \]

\[\Rightarrow f(x + h) - f(x) = \int_{x}^{x+h} \frac{1}{t} \, dt \]

(e) \(f'(s) = 4h(4s) \).

Then \(f''(s) = 4h'(4s) = 4 \cdot 3 \cos^2(4s - 2)(-4 \sin(4s - 2)) = -48 \cos^2(4s - 2) \sin(4s - 2) \)

\[f''(1/2) = -48 \cos(0) \sin(0) = 0 \]