1. (5 points each) Evaluate each of the following integrals

 (a) \(\int_{-3}^{3} \frac{t|t|}{t^4 + 2} \, dt \)
 (b) \(\int t^3 \sqrt{t - 4} \, dt \)
 (c) \(\int_{0}^{3\pi/2} |\sin x| \, dx \)
 (d) \(\int \cos^3 \theta \sin \theta \, d\theta \)

2. (20 points) The profit \(P \) (in thousands of dollars) for a company spending an amount \(s \) (in thousands of dollars) on advertising is \(P = -\frac{1}{10} s^3 + 6s^2 + 400 \). Find the amount of money the company should spend on advertising in order to yield a maximum profit.

3. (a) (6 points) Write the integral which gives the area of the region between \(x = 0 \) and \(x = 1 \), above the \(x \)-axis, and below the curve \(y = x - x^2 \).

 (b) (8 points) Evaluate your integral exactly to find the area.

 (c) (6 points) Find all \(c \) between \(x = 0 \) and \(x = 1 \) so that \(f(c) = f_{avg} \).

4. (20 points) Using the definition for area using right hand endpoints,

 \[A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \left[f(x_1) \Delta x + f(x_2) \Delta x + f(x_3) \Delta x + \ldots + f(x_n) \Delta x \right] \]

 find an expression for the area under the curve \(y = x^3 \) from 0 to 1 as a limit.

5. (5 points each) Let the function \(f \) be defined by \(f(x) = \int_1^x \frac{1}{t} \, dt \) for \(x > 0 \).

 (a) What is \(f(1) \)? What is \(f'(x) \)? What is \(f'(1) \)?

 (b) \(f \) is differentiable. Why?

 (c) Show that \(\frac{d}{dx} \left(f \left(\frac{1}{x} \right) \right) = -f'(x) \).

 (d) Using the definition of \(f \), show that \(f(x + h) - f(x) = \int_x^{x+h} \frac{1}{t} \, dt \).

— END —