APPM 1350 Exam 3 Solutions Spring 2013

1. (32 points) Evaluate the following expressions.
(a) \(\frac{d}{dx} \int_0^{1/x} (2t^3 - t^2) \, dt \)
(b) \(\int \frac{\cos x}{(1 + 2 \sin x)^2} \, dx \)
(c) \(\int_{-6}^0 \sqrt{36 - x^2} \, dx \)
(d) \(\int_2^{16} 5 \, \frac{5}{3x} \, dx \)

Solution:
(a) Use the Fundamental Theorem of Calculus and the Chain Rule.
\[\frac{d}{dx} \int_0^{1/x} (2t^3 - t^2) \, dt = \left(\frac{2}{x} \cdot \frac{1}{x^3} \right) - \left(-\frac{1}{x^2} \right) \]
\[= \frac{2}{x^3} + \frac{1}{x^4} \]

(b) Let \(u = 1 + 2 \sin x \). Then \(du = 2 \cos x \, dx \) and \(\frac{1}{2} \, du = \cos x \, dx \).
\[\int \frac{\cos x}{(1 + 2 \sin x)^2} \, dx = \frac{1}{2} \left(\int \frac{du}{u^2} = \frac{1}{2} \left(-\frac{1}{u} \right) + C \right) \]
\[= -\frac{1}{2(1 + 2 \sin x)} + C \]

(c) The integral equals the area of a quarter-circle with radius 6.
\[\int_{-6}^0 \sqrt{36 - x^2} \, dx = \frac{1}{4} \pi r^2 = \frac{1}{4} \pi (36) = 9\pi \]

(d) \(\int_2^{16} 5 \, \frac{5}{3x} \, dx = \frac{5}{3} \int_2^{16} \frac{dx}{x} = \frac{5}{3} \left[\ln |x| \right]_2^{16} \)
\[= \frac{5}{3} (\ln 16 - \ln 2) = \frac{5}{3} (\ln 8) = \frac{5}{3} (3 \ln 2) = 5 \ln 2 \]

2. (14 points) Let \(p(x) = x^3 + 2x^2 \).
(a) Estimate the area under the curve on the interval \([0, 2]\) using \(n \) evenly spaced subintervals and right endpoints. (Find \(R_n \).) Leave your answer unsimplified.

(b) Find the exact area under the curve by evaluating the limit as \(n \to \infty \) of the expression you found in part (a).

(c) Check your answer by calculating \(\int_0^2 p(x) \, dx \) using the Evaluation Theorem.

Solution:
(a) \(R_n = \sum_{i=1}^{n} p(x_i) \Delta x = \sum_{i=1}^{n} \left[\left(\frac{2i}{n} \right)^3 + 2 \left(\frac{2i}{n} \right)^2 \right] \frac{2}{n} \)

(b) \(A = \lim_{n \to \infty} R_n \)
\[= \lim_{n \to \infty} \sum_{i=1}^{n} \left[\left(\frac{2i}{n} \right)^3 + 2 \left(\frac{2i}{n} \right)^2 \right] \frac{2}{n} \]
\[= \lim_{n \to \infty} \frac{2}{n} \sum_{i=1}^{n} \left(\frac{8i^3}{n^3} \right) + \frac{2}{n} \sum_{i=1}^{n} \left(\frac{4i^2}{n^2} \right) \]
\[= \lim_{n \to \infty} \frac{2}{n} \left[\left(\frac{8}{n^3} \right) \sum_{i=1}^{n} i^3 + 2 \left(\frac{4}{n^2} \right) \sum_{i=1}^{n} i^2 \right] \]
\[= \lim_{n \to \infty} \frac{2}{n} \left[\left(\frac{8}{n^3} \right) \left(\frac{n(n+1)}{2} \right)^2 + 2 \left(\frac{4}{n^2} \right) \left(\frac{n(n+1)(2n+1)}{6} \right) \right] \]
\[
\lim_{n \to \infty} \left[4 \left(\frac{n}{n} \right) \left(\frac{n+1}{n} \right) \left(\frac{n+1}{n} \right) + \frac{16}{6} \right] \left(\frac{n}{n} \right) \left(\frac{n+1}{n} \right) \left(\frac{2n+1}{n} \right) \right]
\]
\[
= \left[4(1 \times 1 \times 1 \times 1) + \frac{16}{6} (1 \times 1 \times 2) \right] \quad \text{(by DOP)}
\]
\[
= 4 + \frac{16}{3} = \frac{28}{3}
\]

(c) \[
\int_0^2 p(x) \, dx = \int_0^2 (x^3 + 2x^2) \, dx
\]
\[
= \left[\frac{1}{4}x^4 + \frac{2}{3}x^3 \right]_0^2
\]
\[
= \frac{16}{4} + \frac{16}{3} = 4 + \frac{16}{3} = \frac{28}{3}
\]

3. (12 points) A particle is moving along a straight line with velocity \(v(t) = t^2 - t \) (in m/s).

(a) What is the total displacement of the particle over the interval \(0 \leq t \leq 4 \)?

(b) What is the total distance traveled over the same interval?

Solution:

(a) Total displacement is
\[
\int_0^4 v(t) \, dt = \int_0^4 (t^2 - t) \, dt
\]
\[
= \left[\frac{1}{3}t^3 - \frac{1}{2}t^2 \right]_0^4
\]
\[
= \frac{64}{3} - \frac{16}{2} = \frac{64}{3} - 8 = \frac{40}{3} \text{ m}.
\]

(b) Total distance traveled is \(\int_0^4 |v(t)| \, dt \). Here \(v(t) = t^2 - t = t(t-1) \) so \(v(t) < 0 \) on \((0, 1)\) and \(v(t) > 0 \) on \((1, \infty)\).

Thus,
\[
\int_0^4 |v(t)| \, dt = \int_0^1 -v(t) \, dt + \int_1^4 v(t) \, dt
\]
\[
= \int_0^1 (t^2 - t) \, dt + \int_1^4 (t^2 - t) \, dt
\]
\[
= \left[\frac{1}{2}t^2 - \frac{1}{3}t^3 \right]_0^1 + \left[\frac{1}{3}t^3 - \frac{1}{2}t^2 \right]_1^4
\]
\[
= \frac{1}{2} - \frac{1}{3} + \left[\frac{1}{3}t^3 - \frac{1}{2}t^2 \right] \bigg|_1^4
\]
\[
= \frac{1}{2} - \frac{1}{3} + \left[\frac{64}{3} - \frac{16}{2} - \left(\frac{1}{3} \cdot \frac{1}{2} \right) \right]
\]
\[
= \frac{1}{2} + \frac{40}{3} + \frac{1}{2} = \frac{41}{3} \text{ m}.
\]

4. (10 points) Use one iteration of Newton’s Method to approximate \(\sqrt{3} \) starting with an initial guess of \(x_1 = 1 \).

Solution:

\[x = \sqrt{3} \Rightarrow x^3 = 3 \Rightarrow x^3 - 3 = 0 \] We wish to approximate the root of \(f(x) = x^3 - 3 \). Differentiating yields \(f'(x) = 3x^2 \).

\[
x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}
\]
\[
= 1 - \frac{1^3 - 3}{3(1^2)}
\]
\[
= 1 - \frac{-2}{3} = \frac{7}{3}.
\]
5. (10 points) Given that \(f(x) \) is odd, \(\int_0^1 f(2x)dx = 1 \), and \(\int_7^2 f(x)dx = 14 \), find \(\int_{-7}^0 f(x)dx \).

Solution:

- \(\int_7^2 f(x)dx = 14 \Rightarrow \int_2^7 f(x)dx = -14 \)
- \(\int_0^1 f(2x)dx = 1 \). Choosing \(u = 2x \), \(du = 2dx \), \(u(1) = 2 \), \(u(0) = 0 \), we get \(\int_0^1 f(2x)dx = \frac{1}{2} \int_0^2 f(u)du = 1 \Rightarrow \int_0^2 f(x)dx = 2 \).
- \(f \) is odd so \(\int_{-7}^7 f(x)dx = 0 \).

Thus,

\[
0 = \int_{-7}^7 f(x)dx = \int_{-7}^0 f(x)dx + \int_0^2 f(x)dx + \int_2^7 f(x)dx = \int_{-7}^0 f(x)dx + 2 - 14
\]

so \(\int_{-7}^0 f(x)dx = 12 \).

6. (12 points) Let \(f \) be a differentiable, one-to-one function.

(a) Copy the graph of \(f \) and add a sketch of the inverse function \(f^{-1} \).

Solution:

(b) Given

\[
\begin{align*}
f(1) &= -\frac{1}{8} & f'(2) &= -\frac{3}{2} \\
f(2) &= -1 & (f^{-1})'(\frac{1}{8}) &= -\frac{8}{3}
\end{align*}
\]

find the following values.

i. \(f^{-1}(-1) \)
ii. \(f(f^{-1}(8)) \)
iii. \((f^{-1})'(-1) \)

Solution:

i. Since \(f(2) = -1 \), then \(f^{-1}(-1) = 2 \)
ii. The cancellation equation for inverse functions is \(f(f^{-1}(x)) = x \) so \(f(f^{-1}(8)) = 8 \)
iii. The slope of \(f^{-1} \) at \((-1, 2)\) is the reciprocal of the slope of \(f \) at \((2, -1)\) so \((f^{-1})'(-1) = 1/f'(2) = -2/3 \).
7. (10 points) Suppose that the function \(f(x) \) has a positive derivative for all \(x \) and that \(f(1) = 0 \). Let

\[
g(x) = \int_0^x f(t) \, dt.
\]

Answer TRUE (if always true) or FALSE (if not always true) for the following statements. No explanation is necessary.

(a) \(g(1) \) is negative.

(b) \(g \) is increasing on \((0, 1)\).

(c) \(g \) has a local maximum at \(x = 1 \).

(d) \(g \) has an inflection point at \(x = 1 \).

(e) The average value of \(g \) on \([0, 1]\) is negative.

Solution:

(a) TRUE. Since \(f \) is an increasing function and \(f(1) = 0 \), then \(f \) is negative on the interval \([0, 1)\). Therefore \(g(1) = \int_0^1 f(t) \, dt \) is negative.

(b) FALSE. Since \(g'(x) = f(x) \) and \(f \) is negative on \((0, 1)\), \(g \) decreases on \((0, 1)\).

(c) FALSE. \(f \) is positive on \((1, \infty)\). Since \(g \) is decreasing on \((0, 1)\) and increasing on \((1, \infty)\), \(g \) has a local minimum at \(x = 1 \).

(d) FALSE. \(g'(x) = f(x) \) and \(g''(x) = f'(x) \). Since \(f' \) is positive for all \(x \), \(g'' \) is also positive so the graph of \(g \) is concave up and does not change concavity.

(e) TRUE. Since \(g \) is negative on \((0, 1)\), \(g_{\text{ave}} = \int_0^1 g(x) \, dx \) is also negative.