1. (15 points)

(a) Find the linearization of \(f(x) = \sqrt{1-x} \) at \(x = 0 \).

(b) Use the linearization to approximate the value of \(\sqrt[4]{0.92} \).

Solution:

(a) First find the values of \(f(0) \) and \(f'(0) \).

\[
\begin{align*}
 f(x) &= (1-x)^{1/4} \\
 f(0) &= 1 \\
 f'(x) &= -\frac{1}{4}(1-x)^{-3/4} = -\frac{1}{4(1-x)^{3/4}} \\
 f'(0) &= -\frac{1}{4}
\end{align*}
\]

Then find \(L(x) \).

\[
L(x) = f(0) + f'(0)(x) = 1 - \frac{1}{4}x
\]

(b) Note that \(\sqrt[4]{0.92} = f(0.08) \approx L(0.08) \).

\[
L(0.08) = 1 - \frac{1}{4}(0.08) = 1 - 0.02 = 0.98
\]

2. (30 points) Consider the function \(f(x) = \frac{-2x}{x^2-3} \). \(f'(x) = \frac{2(x^2+3)}{(x^2-3)^2} \). \(f''(x) = \frac{-4x(x^2+9)}{(x^2-3)^3} \).

(a) Find any vertical, horizontal, or slant asymptotes of \(f \). Use appropriate limits to justify your answer.

(b) On what intervals is \(f \) increasing? decreasing?

(c) Find all local maximum and minimum values of \(f \).

(d) On what intervals is \(f \) concave up? concave down?

(e) Find all inflection points of \(f \).

(f) Using the information from (a) to (e), sketch a graph of \(f \). Clearly label any asymptotes, local extrema, and inflection points.

Solution:

(a) \(f \) is not defined at \(x = \pm \sqrt{3} \) so we check at these x-values for asymptotes.

\[
\begin{align*}
 \lim_{x \to -\sqrt{3}^-} \frac{-2x}{x^2-3} &= \frac{2\sqrt{3}}{0^+} = +\infty, \\
 \lim_{x \to -\sqrt{3}^+} \frac{-2x}{x^2-3} &= \frac{2\sqrt{3}}{0^-} = -\infty, \\
 \lim_{x \to \sqrt{3}^-} \frac{-2x}{x^2-3} &= \frac{-2\sqrt{3}}{0^-} = +\infty, \\
 \lim_{x \to \sqrt{3}^+} \frac{-2x}{x^2-3} &= \frac{-2\sqrt{3}}{0^+} = -\infty.
\end{align*}
\]

So there are vertical asymptotes at \(x = \pm \sqrt{3} \).

\[
\begin{align*}
 \lim_{x \to -\infty} \frac{-2x}{x^2-3} &= \lim_{x \to -\infty} \frac{x^2}{(1-3/x^2)} = -\frac{2}{1} = 0, \\
 \lim_{x \to \infty} \frac{-2x}{x^2-3} &= \lim_{x \to \infty} \frac{2}{(1-3/x^2)} = \frac{2}{1} = 0.
\end{align*}
\]

So there is a horizontal asymptote at \(y = 0 \).

(b) \(f'(x) = \frac{2(x^2+3)}{(x^2-3)^2} > 0 \) so \(f \) is always increasing where defined on \((-\infty, -\sqrt{3}) \cup (-\sqrt{3}, \sqrt{3}) \cup (\sqrt{3}, \infty) \).
(c) Since f is always increasing there are no local extrema.

(d) $f''(x) = \frac{-4x(x^2 + 9)}{(x^2 - 3)^3}$ so $f'' = 0$ at $x = 0$ and f'' is undefined at $x = \pm \sqrt{3}$. Testing values on the four subintervals, we find that f is concave up on $(-\infty, -\sqrt{3} \cup (0, \sqrt{3})$ and concave down on $(-\sqrt{3}, 0) \cup (\sqrt{3}, \infty)$.

(e) f switches from concave up to concave down at $x = 0$ and is continuous at $x = 0$, so $(0, f(0)) = (0, 0)$ is the only inflection point.

(f) Horizontal asymptotes $x = -\frac{1}{2}$, $x = 3^{1/2}$, $y = 0$. Vertical asymptote Inflection point $(0,0)$.

3. (15 points) The second hand on a stopwatch, 5 centimeters in length, makes a full revolution every minute. Let x represent the distance between the tip of the hand and its starting position at the 60-second mark. At what rate is x increasing when the hand reaches the 15-second mark? Express your answer in centimeters per second.

Solution:

We wish to find dx/dt when $\theta = \pi/2$. The second hand makes a full revolution each minute, or 2π radians every 60 seconds, so $d\theta/dt = 2\pi/60 = \pi/30$ rad/sec. Use the Law of Cosines:

$$c^2 = a^2 + b^2 - 2ab \cos \theta.$$

$x^2 = 5^2 + 5^2 - 2(5)(5) \cos \theta$

$x^2 = 50 - 50 \cos \theta$

Differentiate with respect to time.

$$2x \frac{dx}{dt} = 50 \sin \theta \frac{d\theta}{dt}$$

$$x \frac{dx}{dt} = 25 \sin \theta \frac{d\theta}{dt}$$

Note that when $\theta = \pi/2$, then $x = \sqrt{50} = 5\sqrt{2}$.

$$5\sqrt{2} \frac{dx}{dt} = 25 \left(\sin \frac{\pi}{2}\right) \left(\frac{\pi}{30}\right) = 25 \left(\frac{\pi}{30}\right)$$

$$5\sqrt{2} \frac{dx}{dt} = \frac{5\pi}{6}$$
\[
\frac{dx}{dt} = \frac{\pi}{6\sqrt{2}} \text{ cm/sec}
\]

4. (12 points) Let \(f(x) = \frac{1}{x} \), where \(0 < a < b \).

(a) Verify that \(f \) satisfies the hypotheses of the Mean Value Theorem.

(b) Find the value(s) of \(c \) that satisfy the conclusion of the Mean Value Theorem. Express your answer in terms of \(a \) and \(b \).

Solution:

(a) The derivative of \(f \) is \(f'(x) = -\frac{1}{x^2} \). Both \(f \) and \(f' \) are undefined at \(x = 0 \) but we are given that \(a \) and \(b \) are positive so \(f \) is continuous on \([a, b]\) and differentiable on \((a, b)\), satisfying the hypotheses of the Mean Value Theorem.

(b) The Mean Value Theorem states there there is a \(c \) in \((a, b)\) such that \(f'(c) = \frac{f(b) - f(a)}{b - a} \).

\[
f'(c) = \frac{1}{b - a} \cdot \frac{a - b}{ab} = -\frac{1}{ab}
\]

\[
c = \sqrt{ab}
\]

5. (12 points) For the following statements, answer TRUE if the statement is always true and justify your answer. Otherwise provide a sketch of a COUNTEREXAMPLE to show that the statement may be false.

(a) If \(f \) is differentiable for all \(x \), then \(f \) has an absolute minimum value on \([-5, 5] \).

(b) If \(g \) is decreasing for \(x < -2 \) and increasing for \(x > -2 \), then \(g \) has a local minimum value at \(x = -2 \).

(c) If \(h \) is continuous and \(h(-3) = h(7) \), then there is a number \(c \) in \((-3, 7)\) such that \(h'(c) = 0 \).

6. (16 points) Hank Hill is designing a propane tank with a volume of \(64\pi \) cubic meters. The tank is cylindrical with spherical endcaps. The spherical endcaps cost \(\frac{8}{3} \) as much per square meter as the cylindrical body. What dimensions will minimize the cost of materials for the tank?
Solution:
We start by writing down the volume and surface area,
\[V = \frac{4}{3}\pi r^3 + \pi r^2 h = 64\pi, \]
\[S = 4\pi r^2 + 2\pi rh. \]

Since the spherical endcaps cost eight-thirds as much the sidewalls we write down the cost function to be minimized,
\[C(r, h) = \frac{32}{3}\pi r^2 + 2\pi rh. \]

To get cost as a function of a single variable we look to the volume equation,
\[V = \frac{4}{3}\pi r^3 + \pi r^2 h = 64\pi \]
\[\pi r^2 h = 64\pi - \frac{4}{3}\pi r^3 \]
\[h = \frac{64}{r^2} - \frac{4}{3}r, \]
and substitute to get
\[C(r) = \frac{32}{3}\pi r^2 + 2\pi r \left(\frac{64}{r^2} - \frac{4}{3}r \right) \]
\[= \frac{32}{3}\pi r^2 + \frac{128\pi}{r} - \frac{8}{3}\pi r^2 \]
\[= 8\pi r^2 + \frac{128\pi}{r}. \]

We check for critical numbers. The domain of \(C(r) \) is \((0, \infty)\) and \(C(r) \) is defined for all \(r > 0 \) so the only critical points we have are those when \(C'(r) = 0 \).
\[C'(r) = 16\pi r - \frac{128\pi}{r^2} = 0 \]
\[16\pi r^3 = 128\pi \]
\[r^3 = 8 \]
\[r = 2. \]

So \(r = 2 \) is the only critical number of \(C(r) \).

Now,
\[C'(r) = 16\pi r - \frac{128\pi}{r^2} > 0 \]
\[16\pi r^3 > 128\pi \]
\[r^3 > 8 \]
\[r > 2, \]
and
\[C'(r) = 16\pi r - \frac{128\pi}{r^2} < 0 \]
\[16\pi r^3 < 128\pi \]
\[r^3 < 8 \]
\[r < 2. \]

So \(r = 2 \) is a critical number of \(C(r) \) and \(C(r) \) is increasing when \(r > 2 \) and \(C(r) \) is decreasing when \(r < 2 \). Thus by the First Derivative Test for Absolute Extrema the cost is minimized when \(r = \frac{2}{3} \) meters and
\[h = \frac{64}{2^2} - \frac{4}{3}(2) = 16 - \frac{8}{3} = \frac{48 - 8}{3} = \frac{40}{3} \text{ meters}. \]