1. The following parts are not related:
 (a) (10 pts) Approximate the area of the region bounded by the curve \(y = x^2 + 4 \) from \(x = -4 \) to \(x = 4 \) and the \(x \)-axis using a Riemann Sum with 4 subintervals of equal length and taking the sample points to be midpoints.

 \[
 \int_{-4}^{4} (x^2 + 4) \, dx \approx 2 \left[f(-3) + f(-1) + f(1) + f(3) \right] = 2[13 + 5 + 5 + 13] = 2(36) = 72
 \]

 (b) The following limit of Riemann Sums, \(\lim_{n \to \infty} \sum_{i=1}^{n} \frac{16i}{n^2} \sqrt{16 - \frac{16i^2}{n^2}} \), describes the area of the region bounded by some function \(f(x) \) for \(0 \leq x \leq 4 \) and the \(x \)-axis using subintervals of equal length and \(x_i^* = x_i \).

 (i) (6 pts) What is the function \(f(x) \)?

 (ii) (9 pts) What is the area of the region described by the limit? (Hint: Interpret the limit as a definite integral.)

 Solution:

 (a) (10 pts) Note that here \(\Delta x = \frac{4 - (-4)}{4} = 8/4 = 2 \) and so the subintervals are \([-4, -2], [-2, 0], [0, 2], \) and \([2, 4]\), so clearly the midpoints are \(x_1^* = -3, x_2^* = -1, x_3^* = 1, x_4^* = 3 \), thus we have

 \[
 \int_{-4}^{4} (x^2 + 4) \, dx \approx 2 \left[f(-3) + f(-1) + f(1) + f(3) \right] = 2[13 + 5 + 5 + 13] = 2(36) = 72
 \]

 (b) (i) (6 pts) Here we have \(\Delta x = \frac{4 - 0}{n} = \frac{4}{n} \) and \(x_i^* = x_i = 0 + i \Delta x = \frac{4i}{n} \), so

 \[
 \lim_{n \to \infty} \sum_{i=0}^{n} \frac{16i}{n^2} \sqrt{16 - \frac{16i^2}{n^2}} = \lim_{n \to \infty} \sum_{i=0}^{n} \frac{4i}{n} \sqrt{16 - \left(\frac{4i}{n} \right)^2} \cdot \frac{4}{n} = \lim_{n \to \infty} \sum_{i=0}^{n} f(x_i^*) \Delta x = \lim_{n \to \infty} \sum_{i=0}^{n} f(x_i^*) \Delta x \text{ so, } f(x) = x \sqrt{16 - x^2}.
 \]

 (b) (ii) (9 pts) We determine the limit by evaluating the definite integral using the substitution \(u = 16 - x^2 \), then \(du = -2xdx \) and,

 \[
 \int_{0}^{4} x \sqrt{16 - x^2} \, dx = -\frac{1}{2} \int_{0}^{6} u^{1/2} \, du = \frac{1}{2} \int_{0}^{16} u^{1/2} \, du = \frac{1}{2} \frac{2}{3} u^{3/2} \bigg|_{0}^{16} = \frac{1}{3} (16)^{3/2} = \frac{64}{3}
 \]

2. The following problems are not related.

 (a) (10 pts) Use Newton’s method to find \(x_2 \), the second approximation of the intersection point of the functions \(y = \sin(x) \) and \(y = \cos(x) \), if the initial approximation is \(x_1 = \frac{\pi}{2} \).

 (b) A square swimming pool with base width \(x \) meters and fixed depth of \(y \) meters is being constructed. The inside walls and floor of the pool are to be painted with a special water-proof paint. There is enough paint to cover exactly 300 \(m^2 \) of surface and the builder plans to use it all up for the painting of this pool:

 (i) (12 pts) What is the largest possible volume of such a pool?

 (ii) (3 pts) How do you know your answer is a maximum? (Justify your answer based on the theories of this class.)

 Solution:

 (a) (10 pts) We wish to approximate a solution to \(\sin(x) = \cos(x) \) which implies \(\sin(x) - \cos(x) = 0 \), so, in Newton’s Method, if we let \(f(x) = \sin(x) - \cos(x) \) then

 \[
 x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = \frac{\pi}{2} - \frac{\sin(\pi/2) - \cos(\pi/2)}{\cos(\pi/2) + \sin(\pi/2)} = \frac{\pi}{2} - \frac{1 - 0}{1 + 0} = \frac{\pi}{2} - 1.
 \]
3. The following problems are not related:

(a) (10 pts) Given that \(g(x) \) is an odd function, \(\int_{-2}^{2} g(x) \, dx = 13 \) and \(\int_{-2}^{2} g(x) \, dx = 4 \), find \(\int_{-2}^{5} 3g(x) \, dx \).

(b) Given that \(F(x) = \int_{-2}^{2} \sqrt{5+t^2} \, dt \), answer the following questions without attempting to evaluate any integrals:
 (i) (3 pts) Is \(F(-2) \) positive, negative or neither?
 (ii) (6 pts) On what interval(s) is the function \(F(x) \) increasing? decreasing?
 (iii) (6 pts) Find the linearization of \(F(x) \) at \(x = -1 \).

Solution:

(a) (10 pts) Note that since \(g \) is odd, \(\int_{-2}^{2} g(x) \, dx = 0 \) and so

\[
\int_{-2}^{5} 3g(x) \, dx = 3 \left[\int_{-2}^{2} g(x) \, dx + \int_{2}^{5} g(x) \, dx \right] = 3 \int_{2}^{5} g(x) \, dx
\]

and now note \(\int_{2}^{5} g(x) \, dx = \int_{2}^{5} g(x) \, dx + \int_{2}^{7} g(x) \, dx \), thus

\[
\int_{2}^{5} g(x) \, dx = \int_{2}^{7} g(x) \, dx - \int_{5}^{7} g(x) \, dx = 13 - 4 = 9
\]

and so, finally, \(\int_{-2}^{5} 3g(x) \, dx = 3 \int_{2}^{5} g(x) \, dx = 3 \cdot 9 = 27 \).

(b)(i) (3 pts) Note that

\[
F(-2) = \int_{-2}^{-4} \sqrt{5+t^2} \, dt - \int_{-4}^{2} \sqrt{5+t^2} \, dt
\]

and, since \(\sqrt{5+t^2} > 0 \) for \(-4 < t < -2\), we have, \(\int_{-4}^{2} \sqrt{5+t^2} \, dt > 0 \) and thus \(F(-2) = - \int_{-4}^{2} \sqrt{5+t^2} \, dt < 0 \) so \(F(-2) \) is negative.

(b)(ii)(6 pts) We first find \(F'(x) \) by applying the Fundamental Theorem of Calculus,

\[
F'(x) = \frac{d}{dx} \left[\int_{-2}^{2} \sqrt{5+t^2} \, dt \right] = \sqrt{5+(2x)^2} \cdot 2 = 2\sqrt{5+4x^2}
\]

and so \(F'(x) > 0 \) for all \(x \). So, \(F(x) \) is increasing on the interval \((-\infty, \infty)\) and is decreasing for no values of \(x \).
(b)(iii)(6 pts) Note that \(F(-1) = \int_{-2}^{-1} \sqrt{5+1^2} \, dt = 0 \) and \(F'(-1) = 2\sqrt{5+4} = 6 \) (from part (ii)) and so the linearization of \(F(x) \) is

\[
L(x) = L(x) = F(-1) + F'(-1)(x+1) = 6(x+1) = 6x + 6.
\]

4. The following problems are not related.

(a)(i)(15 pts) Evaluate these integrals: (i) \(\int \sin(x) \cot(x) \, dx \) (ii) \(\int_1^\sqrt{2} 2x^3 \sqrt{x^2 - 1} \, dx \) (iii) \(\int_{-2}^{2} \sqrt{16-4x^2} \, dx \)

(b)(10 pts) Show that \(\int_0^1 x^{10}(1-x)^6 \, dx = \int_0^1 x^6(1-x)^{10} \, dx \). Justify your answer.

Solution:

(a)(i)(5 pts) Here we have,

\[
\int \sin(x) \cot(x) \, dx = \int \sin(x) \cdot \frac{\cos(x)}{\sin(x)} \, dx = \int \cos(x) \, dx = \sin(x) + C
\]

(a)(ii)(5 pts) Using the substitution \(u = x^2 - 1 \) we have \(du = 2x \, dx \) and \(x^2 = u + 1 \), thus

\[
\int_1^\sqrt{2} 2x^3 \sqrt{x^2 - 1} \, dx = \int_1^{\sqrt{2}} x^2 \sqrt{x^2 - 1} \, 2x \, dx = \int_0^1 (u + 1) \sqrt{u} \, du = \int_0^1 (u^{3/2} + u^{1/2}) \, du
\]

and so

\[
\int_0^1 (u^{3/2} + u^{1/2}) \, du = \left(\frac{2}{5} u^{5/2} + \frac{2}{3} u^{3/2} \right) \bigg|_{u=0}^{u=1} = \frac{2}{5} + \frac{2}{3} = \frac{6}{15} + \frac{10}{15} = \frac{16}{15}
\]

(a)(iii)(5 pts) First note that

\[
\int_{-2}^{2} \sqrt{16-4x^2} \, dx = \int_{-2}^{2} \sqrt{4(4-x^2)} \, dx = 2 \int_{-2}^{2} \sqrt{4-x^2} \, dx
\]

and the graph of \(y = \sqrt{4-x^2} \) is the top half of the circle centered at the origin with radius \(r = 2 \), so

\[
2 \int_{-2}^{2} \sqrt{4-x^2} \, dx = 2 \cdot \frac{\pi r^2}{2} \bigg|_{r=2} = 4\pi
\]

(b)(10 pts) If we use the substitution \(u = 1-x \), then \(du = -dx \) and \(x = 1-u \), and so

\[
\int_0^1 x^{10}(1-x)^6 \, dx = - \int_1^0 (1-u)^{10} u^6 \, du = \int_0^1 (1-u)^{10} u^6 \, du
\]

and since the variable “\(u \)” is a “dummy variable” in the definite integral we can replace it with “\(x \)” and so we have

\[
\int_0^1 x^{10}(1-x)^6 \, dx = \int_0^1 (1-u)^{10} u^6 \, du = \int_0^1 u^6(1-u)^{10} \, du = \int_0^1 u^6(1-x)^{10} \, dx
\]