Consider

\[y = f(t) = b^t \]

b is called the base

Now consider exponential functions that have the base \(e = 2.71828 \ldots \)

that is,

\[y = f(t) = e^t \]

Magically

\[\frac{dy}{dt} = e^t \quad \text{and} \quad \int e^t \, dt = e^t + c \]

Now consider

\[y = Ae^{rt} = Ae^{w} \quad \text{where} \quad w = rt \quad \Rightarrow \]

\[\frac{dy}{dt} = \frac{dy}{dw} \frac{dw}{dt} = Ae^w \frac{dw}{dt} = rAe^{rt} \]

and

\[\int rAe^{rt} \, dt = rA \int e^{rt} \, dt \]

\[= Ae^{rt} + c \]

Note the following,

\[\% \Delta y \quad \text{wrt} \quad t = \frac{\frac{dy}{dt}}{y} = \frac{rAe^{rt}}{Ae^{rt}} = r \]

so if \(y = Ae^{rt} \) where \(t \) is time

y is growing (or declining) at the constant % rate \(r \).
For example,

\[s(t) = s(0)e^{0.07t} \]

where

\(s(t) \) is number of squirrels on campus at time \(t \).

In which case, the squirrel population grows at 7% a year.

Or

If the interest rate is \(r \) and \(V(0) \) dollars are invested when \(t = 0 \) then

\[V(t) = V(0)e^{rt} \]

where \(V(t) \) is the value of the investment at time \(t \).

What then is the present value, \(PV \), of \(V(t) \) where \(t=0 \) is the present?

If \(V(t) = V(0)e^{rt} \)

then

\[PV = V(0) = V(t)e^{-rt} \]

PV is the present value of \(V(t) \); i.e. it is what \(V(t) \) is worth to you today.

With all this in mind, consider the problem of deciding when to drink (or sell) a bottle of good wine

where

\[V(t) = Ke^{1.5} \quad \Rightarrow \text{growth rate in the value of the wine} = (0.5t^{-5}). \]

\(V(t) \) is the value of the wine at time \(t \).

\(K \) is the purchase price.

Assume no storage costs and that the market rate of interest is \(r \).

What is the objective?

To max the value of the wine? NO

To max the PV of the wine

\[PV(t) = V(t)e^{-rt} \]

where \(PV(t) \) is the PV of the wine if it is sold (drank) at time \(t \).

Therefore

\[PV(t) = Ke^{1.5}e^{-rt} = Ke^{(t^5-rt)}. \]
We want to find that \(t, t^* \) that max \(PV(t) \)

\[
1. \quad \frac{dPV(t)}{dt} = \frac{dKe^{t^* - r}}{dt} = Ke^{(t^* - r)}(.5t^{-5} - r) = PV(t)(.5t^{-5} - r) \quad \text{set} = 0
\]

Since \(PV(t) \neq 0 \), \(1 \) is only zero if \(.5t^{-5} - r = 0 \).

Solve this for \(t^* \) to obtain \(t^* = \frac{1}{4r^2} \). (Note: \(t^* \) does not depend on \(K \)).

or graphically,

When would you sell (drink) the wine if \(V(t) = Ke^{gt} \)?

Now let's consider streams of benefits (or costs).
Assume a stream of benefits \(B(t) \) \(t = 0 \)
Assume a stream of costs \(C(t) \)

What is the PV of this stream if the interest rate is \(r \)? It is

\[
PV = \int_0^{\infty} [B(t) - C(t)]e^{-rt} \, dt
\]

Example: what if you won the Colorado lottery to the tune of $1,000,000 (payable at $50,000 yr for 20 years). What are the winnings worth to you if your interest rate is \(r = .10 \)?
Do we have truth in advertising?

What if they paid $50,000/year forever (they won't)?

A constant payment that goes on forever is called a "Perpetual Flow."

What is the PV of a Perpetual Flow of constant benefits, B?

\[
\begin{align*}
PV &= \int_0^\infty Be^{-rt}dt = \lim_{s \to \infty} \int_0^s Be^{-rt}dt \\
&= B \lim_{s \to \infty} \int_0^s e^{-rt}dt \\
&= B \lim_{s \to \infty} -\frac{1}{r} (1-e^{-rs}) = B \frac{1}{r}
\end{align*}
\]

So if B = 50,000 and r = .10

PV of a perpetual flow of $50,000 is $500,000.

With a discount rate of 10% forever is not worth much more than twenty years.

What is the PV of $50,000 starting 21 years from now and lasting forever?
Now return to the wine problem where

\[V(t) = 15e^{t^5} \]

but now assume it costs $1/yr to store the wine.

When should the wine be sold (or drank)?

There is now a stream of storage costs so, if the wine is sold at time \(t \), the PV of the storage costs are

\[\int_0^t e^{-rt} dt = \frac{1}{r} (1 - e^{-rt}). \]

Therefore the PV of the wine if it is sold at time \(t \) is

\[\text{max wrt } t \]

\[PV(t) = 15e^{t^5}e^{-rt} - \frac{1}{r} (1 - e^{-rt}) \]

\[\frac{dPV(t)}{dt} = (.5t^{-5}) 15e^{t^5}e^{-rt} - r 15e^{t^5}e^{-rt} - e^{-rt} \]

\[= \left[.5t^{-5} 15e^{t^5} - r 15e^{t^5} - 1 \right] e^{-rt} \text{ set } = 0 \]

but \(e^{-rt} \neq 0 \), so

\[.5t^{-5} 15e^{t^5} - r 15e^{t^5} - 1 = 0. \]

Give \(r \) a specific value and use Mathematica to solve (use Find Root, Solve can't do it).

For example, if \(r = .01 \)

\[.5t^{-5} 15e^{t^5} - .15e^{t^5} - 1 = 0 \]

\[7.5t^{-5} e^{t^5} - .15e^{t^5} - 1 = 0 \]

\[t = .861454 \]

Storage costs are high relative to the rate of appreciation in selling price, so don't hold it
Note that, in general,
\[
\left(\frac{.5t^{-5} 15e^{t^5}}{V'(t)} - \frac{r 15e^{t^5}}{rV(t)} - 1 \right) = 0
\]

is
\[
\frac{V'(t)}{rV(t)} - s = 0
\]

increase in selling price if wait one more year
lost interest because the sale was postponed one year (could have sold and put money in bank)
storage costs

sell when ⇒
\[
\frac{V'(t)}{rV(t)} + s = 0
\]
benefits from waiting costs of waiting

⇒
\[
V'(t) - s = rV(t)
\]
\[
r = \frac{V'(t)}{V(t)} - \frac{s}{V(t)}
\]
% grow rate in the value of the wine (accounting for storage costs)

Graphically,
In our particular case

\[
\frac{V'(t)}{V(t)} - \frac{s}{V(t)} = \frac{.5t^{-5} 15e^t}{15e^t} - \frac{1}{15e^t} = .5t^{-5} - \left(15e^t\right)^{-1}
\]

- % growth rate in wine not accounting for storage costs
- % growth rate in wine accounting for storage costs