A Primer on Difference Equations

1. First-Order Difference Equations

Consider the following differential equation:

\[y_{t+1} + \beta y_t = \kappa, \quad (1.1) \]

where \(y \) is a variable of interest, \(t \) is time, and \(\beta \) and \(\kappa \) are constants. The solution to this differential equation is the sum of a particular integral \(y^p \) and a complementary function \(y^c \):

\[y_t = y^p + y^c. \quad (1.2) \]

The solution depends on the value of \(\beta \).

The Particular Integral

The particular integral is any solution to the full nonhomogenous equation. For example, assume that \(y \) is constant over time. Then, \(y_{t+1} = y_t \) and

\[y^p = \kappa/(1 + \beta) \quad (\beta \neq -1). \quad (1.3) \]

The Complementary Function

The complementary function is the solution to the homogenous equation

\[y_{t+1} + \beta y_t = 0, \quad (1.4) \]

We guess that the solution is of the form

\[y^c = \Gamma \rho^t, \quad (1.5) \]

where \(\Gamma \) and \(\rho \) are an undetermined coefficients. The value of \(\rho \) is found as follows. Note that if our guess holds, \(y_{t+1} = \Gamma \rho^{t+1} \), and we can write (1.4) as:

\[\Gamma \rho^{t+1} + \beta \Gamma \rho^t = 0, \quad (1.6) \]

which implies that \(\rho = -\beta \).

The Full Solution
To obtain the full solution, we must identify Γ. As long as $\beta \neq 0$, we have:

\[y_t = y^p + y^c, \]

\[= \frac{\kappa}{(1 + \beta)} + \Gamma (-\beta)^t. \quad (1.7) \]

We find Γ by imposing an initial condition. In this case, we assume that $y_0 = \bar{y}$ at time $t = 0$. Also, at time $t = 0$, we have $y_0 = \frac{\kappa}{(1 + \beta)} + \Gamma(-\beta)^0$, such that $\Gamma = \bar{y} - \kappa/(1 + \beta)$.

The full solution is then

\[y_t = \frac{\kappa}{(1 + \beta)} + \left(\bar{y} - \frac{\kappa}{(1 + \beta)} \right) (-\beta)^t \quad (\beta \neq -1) \quad (1.8) \]

In the case where $\beta = -1$, the differential equation reduces to

\[y_{t+1} - y_t = \kappa. \quad (1.9) \]

In this case, the solution is found by straight integration to be

\[y_t = \kappa t + \Gamma, \quad (1.10) \]

where Γ is an undetermined coefficient. Using our initial condition, $y_0 = \bar{y} = \kappa 0 + \Gamma$, such that $\Gamma = \bar{y}$. The full solution is

\[y_t = \bar{y} + \kappa t \quad (\beta = -1). \quad (1.11) \]

So, the solutions are:

\[y_t = \begin{cases} \frac{\kappa}{(1 + \beta)} + [\bar{y} - \kappa/(1 + \beta)] (-\beta)^t & \text{if } \beta \neq -1 \\ \bar{y} + \kappa t & \text{if } \beta = -1. \end{cases} \quad (1.12) \]

2. Second-Order Differential Equations

The differential equation can be written as:

\[y_{t+2} + \alpha y_{t+1} + \beta y_t = \kappa, \quad (2.1) \]

where y is a variable, t is time, and α, β, and κ are constants.

The Particular Integral
The particular integral is any solution to the full nonhomogenous equation. For example, assume that y is constant over time. Then, $y_{t+2} = y_{t+1} = y_t$ and

$$y^p = \frac{\kappa}{1 + \alpha + \beta} \quad (\alpha + \beta \neq -1). \quad (2.2)$$

If $\alpha + \beta = -1$, then assume that $y_t = \eta t$. This implies that $y_{t+2} = \eta(t+2)$, $y_{t+1} = \eta(t+1)$, and (at $t = 0$) $(2 + \alpha)\eta = \kappa$. Thus, $\eta = \kappa/(\alpha + 2)$, and the particular integral is

$$y^p = \frac{\kappa}{(\alpha + 2)} \cdot \quad (\alpha + \beta = -1, \alpha \neq -2). \quad (2.3)$$

Finally, if $\alpha + \beta = -1$ and $\alpha = -2$, we try $y_t = \eta t^2$. It implies that $y_{t+2} = \eta(t + 2)^2$, $y_{t+1} = \eta(t + 1)$, and (at $t = 0$) $(4 + \alpha)\eta = \kappa$. Then, $\eta = \kappa/2$ and

$$y^p = \frac{\kappa}{2} \cdot \quad (\alpha + \beta = -1, \alpha = -2). \quad (2.4)$$

So, the particular integral is:

$$y^p = \begin{cases}
\frac{\kappa}{1 + \alpha + \beta} & \text{if } \alpha + \beta \neq -1 \\
\frac{\kappa}{(\alpha + 2)} \cdot t & \text{if } \alpha + \beta = -1 \text{ and } \alpha \neq -2 \\
\frac{\kappa}{2} \cdot t^2 & \text{if } \alpha + \beta = -1 \text{ and } \alpha = -2
\end{cases} \quad (2.5)$$

The Complementary Function

The complementary function is the solution to the homogenous equation

$$y_{t+2} + \alpha y_{t+1} + \beta y_t = 0. \quad (2.6)$$

We guess that the solution is of the form

$$y^c = \Gamma \rho^t. \quad (2.7)$$

This solution implies that $y_{t+2} = \Gamma \rho^{t+2}$ and $y_{t+1} = \Gamma \rho^{t+1}$. Substituting in (2.5), we find

$$\Gamma \rho^{t+2} + \alpha \Gamma \rho^{t+1} + \beta \Gamma \rho^t = 0. \quad (2.8)$$

The solution to this requires to solve the quadratic form:

$$\rho^2 + \alpha \rho + \beta = 0. \quad (2.9)$$

The solution to the quadratic form is:

$$\rho_1, \rho_2 = \frac{-\alpha \pm \sqrt{\alpha^2 - 4\beta}}{2}. \quad (2.10)$$
This implies that
\[\rho_1 + \rho_2 = -\alpha \]
\[\rho_1 \rho_2 = \beta \]

There are three possible cases.

Case 1: Distinct Real Roots \(\alpha^2 > 4\beta \). In this case, the solution is
\[y^c = \Gamma_1 \rho_1^t + \Gamma_2 \rho_2^t. \] (2.11)
where \(\rho_1 + \rho_2 = -\alpha \) and \(\rho_1 \rho_2 = \beta \).

Case 2: Repeated Real Roots \(\alpha^2 = 4\beta \). In this case,
\[y^c = \Gamma_1 \rho^t + \Gamma_2 t \rho^t, \] (2.12)
and \(\rho = -\alpha/2 \).

Case 3: Complex Roots \(\alpha^2 < 4\beta \).
\[y^c = \Gamma_1 \rho_1^t + \Gamma_2 \rho_2^t, \] (2.13)
where \(\rho_1 = h + vi \) and \(\rho_2 = h - vi \), for \(h = -\alpha/2 \), \(v = \left(\sqrt{4\beta - \alpha^2} \right)/2 \), and \(i = \sqrt{-1} \). We can rewrite equation (2.13) as:
\[y^c = R^t \left(\Gamma_3 \cos \theta t + \Gamma_4 \sin \theta t \right), \] (2.14)
where \(\Gamma_3 = \Gamma_1 + \Gamma_2 \), \(\Gamma_4 = (\Gamma_1 - \Gamma_2) i \), \(R = \sqrt{\beta^2} \), and \(\theta \) defined such that \(\cos \theta = h/R \) and \(\sin \theta = v/R \).

The Full Solution
The full solution requires to identify \(\Gamma \). Consider first the distinct real root case \((\alpha^2 > 4\beta) \). In this case \(y = y^p + y^c \) and
\[y_t = y^p + \Gamma_1 \rho_1^t + \Gamma_2 \rho_2^t, \] (2.15)
where \(\rho_1 + \rho_2 = -\alpha \), \(\rho_1 \rho_2 = \beta \), and \(y^p \) defined in equation (2.5). We require two conditions to find \(\Gamma_1 \) and \(\Gamma_2 \). For example, we impose \(y_0 = \bar{y} \) and \(y_1 = \dot{y} \). Then,
\[y_0 = \bar{y} = y^p + \Gamma_1 + \Gamma_2 \]
\[y_1 = \dot{y} = y^p + \rho_1 \Gamma_1 + \rho_2 \Gamma_2. \]
These two equations (with two unknowns) can be solved for \(\Gamma_1 \) and \(\Gamma_2 \).
In the repeated real root case ($\alpha^2 = 4\beta$), we find

$$y_t = y^p + \Gamma_1 \rho^t + \Gamma_2 t \rho^t, \quad (2.16)$$

where $\rho = -\alpha/2$ and y^p defined in equation (2.5). We impose $y_0 = \bar{y}$ and $y_1 = \hat{y}$ to obtain:

$$y_0 = \bar{y} = y^p + \Gamma_1$$

$$y_1 = \hat{y} = y^p + \rho_1 \Gamma_1 + \rho_2 \Gamma_2.$$

These can be solved for Γ_1 and Γ_2.

Finally, in the complex root case, $\alpha^2 < 4\beta$, we find

$$y_t = y^p + R^t (\Gamma_3 \cos \theta t + \Gamma_4 \sin \theta t), \quad (2.17)$$

where $h = -\alpha/2$, $v = \left(\sqrt{4\beta - \alpha^2}\right)/2$, $R = \sqrt{\beta^2}$, and θ defined such that $\cos \theta = h/R$ and $\sin \theta = v/R$. We use $y_0 = \bar{y}$ and $y_1 = \hat{y}$ to obtain:

$$y_0 = \bar{y} = y^p + \Gamma_3,$$

$$y_1 = \hat{y} = y^p + R \Gamma_3 \cos \theta + R \Gamma_4 \sin \theta,$$

since $\cos 0 = 1$ and $\sin 0 = 0$. The two equations can be solved for Γ_3 and Γ_4.

References