LETTERS

edited by Jennifer Sils

Climate Change and the Integrity of Science

WE ARE DEEPLY DISTURBED BY THE RECENT ESCALATION OF POLITICAL ASSAULTS ON SCIENTISTS in general and on climate scientists in particular. All citizens should understand some basic scientific facts. There is always some uncertainty associated with scientific conclusions; science never absolutely proves anything. When someone says that society should wait until scientists are absolutely certain before taking any action, it is the same as saying society should never take action. For a problem as potentially catastrophic as climate change, taking no action poses a dangerous risk for our planet.

Scientific conclusions derive from an understanding of basic laws supported by laboratory experiments, observations of nature, and mathematical and computer modeling. Like all human beings, scientists make mistakes, but the scientific process is designed to find and correct them. This process is inherently adversarial—scientists build reputations and gain recognition not only for supporting conventional wisdom, but even more so for demonstrating that the scientific consensus is wrong and that there is a better explanation. That's what Galileo, Pasteur, Darwin, and Einstein did. But when some conclusions have been thoroughly and deeply tested, questioned, and examined, they gain the status of "well-established theories" and are often spoken of as "facts."

For instance, there is compelling scientific evidence that our planet is about 4.5 billion years old (the theory of the origin of Earth), that our universe was born from a single event about 14 billion years ago (the Big Bang theory), and that today's organisms evolved from ones living in the past (the theory of evolution). Even as these are overwhelmingly accepted by the scientific community, fame still awaits anyone who could show these theories to be wrong. Climate change now falls into this category. There is compelling, comprehensive, and consistent objective evidence that humans are changing the climate in ways that threaten our societies and the ecosystems on which we depend.

Many recent assaults on climate science and, more disturbingly, on climate scientists by climate change deniers are typically driven by special interests or dogma, not by an honest effort to provide an alternative theory that credibly satisfies the evidence. The Intergovernmental Panel on Climate Change (IPCC) and other scientific assessments of climate change, which involve thousands of scientists producing massive and comprehensive reports, have, quite expectedly and normally, made some mistakes. When errors are pointed out, they are corrected. But there is nothing remotely identified in the recent events that changes the fundamental conclusions about climate change:

(i) The planet is warming due to increased concentrations of heat-trapping gases in our atmosphere. A snowy winter in Washington does not alter this fact.

(ii) Most of the increase in the concentrations of these gases over the last century is due to human activities, especially the burning of fossil fuels and deforestation.

(iii) Natural causes always play a role in changing Earth's climate, but are now being overwhelmed by human-induced changes.

(iv) Warming the planet will cause many other climatic patterns to change at unprecedented in modern times, including increasing rates of sea-level rise and alterations in the hydrologic cycle. Rising concentrations of carbon dioxide are making the oceans more acidic.

(v) The combination of these complex climate changes threatens coastal communities and cities, our food and water supplies, marine and freshwater ecosystems, forests, high mountain environments, and far more.

Much more can be, and has been, said by the world's scientific societies, national academies, and individuals, but these conclusions should be enough to indicate why scientists are concerned about what future generations will face from business-as-usual practices. We urge our policy-makers and the public to move forward immediately to address the causes of climate change, including the unrestrained burning of fossil fuels.

We also call for an end to McCarthy-like threats of criminal prosecution against our colleagues based on innuendo and guilt by association, the harassment of scientists by politicians seeking distractions to avoid taking action, and the outright lies being spread about them. Society has two choices: We can ignore the science and hide our heads in the sand and hope we are lucky, or we can act in the public interest to reduce the threat of global climate change quickly and substantively. The good news is that smart and
Shifting the Debate on Geoengineering

AS DISCUSSED IN THE RECENT POLICY FORUM “The politics of geoengineering” (J. J. Blackstock and J. C. S. Long, 29 January, p. 527), there is growing recognition that avoiding dangerous climate change during the 21st century may require society to adopt geoengineering technologies to supple-

ment CO$_2$ emission reduction efforts. Unfortunately, despite the essential role that CO$_2$ removal (CDR) and solar radi-

ation management (SRM) technologies may play in reducing the risks of dangerous climate change, discussions of the necessary research and development [including the Policy Forum and others (1, 2)] frequently turn into debates about the environmental costs and benefits of SRM. A more produc-

tive approach would shift the debate to comparing the relative costs and benefits of CDR and SRM.

CDR approaches are frequently discounted because, as Blackstock and Long explain, “technical challenges and large uncertainties [surround] large-scale CDR deployment.” Although this may be true for human-built systems that capture CO$_2$ from air at ambient concentrations, there are other technologies based on biological carbon fixation that could be fast-track for rapid deployment during the next few decades (3). Most major international energy corporations are investing in algal-based biofuel technologies because of the tremendous production potential of algae relative to terrestrial energy crops (4). Commercial-scale production of algal biofuels will begin during the next 5 years, and rapid scaling up can be expected afterward if the economic incentives are favorable. However, becoming carbon negative will require society to develop plans for retrofitting existing coal-fired power plants and building future ones so that they can burn algal biomass and capture the emitted CO$_2$ for subsequent sequestration. The basic technologies described here are not novel; rather, I am proposing a conceptual rearrangement that may enable society to transition more gracefully avoiding dangerous climate change dur-

ing and fossil fuel combustions. Studies of the economic incentives are favorable. However, becoming carbon negative will require society to develop plans for retrofitting existing coal-fired power plants and building future ones so that they can burn algal biomass and capture the emitted CO$_2$ for subsequent sequestration. The basic technologies described here are not novel; rather, I am proposing a conceptual rearrangement that may enable society to transition more gracefully...

CORRECTIONS AND CLARIFICATIONS

Research Articles: “Doc2b is a high-affinity Ca$^{2+}$ sensor for spontaneous neurotransmitter release” by A. J. Groffen et al. (26 March, p. 1634). Several author affiliations were not footnoted properly; three corrected affiliations follow. Y. Takai, Y. Tomita, N. Iizuka, University of Tokyo, Tokyo, Japan, and T. Fujita, Department of Biochemistry, University of Chicago, 1025 East 57th Street, Chicago, IL 60637, USA. The affiliation that was listed is his present address.

“100-million-year dynasty of giant planktivorous bony fishes in the Mesozoic seas” by M. Friedman et al. (19 February, p. 784). Incorrect titles were used for references 1 and 2. The correct titles of these references are “100-million-year dynasty of giant planktivorous bony fishes in the Mesozoic seas” and “100-million-year dynasty of giant bony fishes in the Mesozoic seas,” respectively.

“Epigenetic transgenerational actions of endocrine disruptors and male fertility” by M. D. Anway et al. (3 June 2005, p. 1466). As clarification of the abstract to Anway et al., the F$_1$ to F$_4$ generations were examined after vinclozolin treatment, and F$_5$ and F$_6$ generations were examined after methoxychlor treatment. To clarify data referred to in the last paragraph of the Report, serum testosterone measurements after vinclozolin treatment were shown in reference 2 (Cupp et al.) for the F$_1$ generation, but measurements of the F$_4$ generation have not been published. The Science Anway et al. manuscript showed DNA methylation analysis after vinclozolin treatment, but the DNA methylation data after methoxychlor treatment have not been published.
from fossil to modern carbon fuel sources while simultaneously reducing CO$_2$ levels in the atmosphere and ocean.

CHARLES H. GREENE
Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA. E-mail: chg2@cornell.edu

References

Response
GREENE SUGGESTS THAT CO$_2$ REMOVAL methods deserve expanded evaluation and research. We agree. In the long run, these methods may be the only way to reduce atmospheric concentrations of CO$_2$ to values closer to those of the preindustrial era. Greene suggests a scheme for using biomass to generate electricity combined with carbon capture and storage. This idea has merit. Even schemes that capture CO$_2$ directly from the air deserve expanded research.

However, Greene’s statement that “discussions of the necessary research and development...frequently turn into debates about the environmental costs and benefits of SRM [solar radiation management]” misses a key point motivating all three of the articles he cites [our Policy Forum and (1, 2)]. The two approaches differ in both strategic impact and risks. Most CO$_2$ removal schemes, including those suggested by Greene, would be slow acting and expensive, and would pose no transboundary risks. In contrast, SRM techniques appear inexpensive and could have rapid climatic impact, but present a host of global climatic and political risks.

The low cost and technical feasibility of some SRM technologies (particularly stratospheric aerosol injection) mean that SRM might be our only response if a “climate emergency” develops. However, these traits also mean that SRM could be globally tested unilaterally by a single country, to the possible detriment of others (3). Beyond the climatic risks this presents, such actions could also severely disrupt progress on international climate policy.

The discussion of urgent governance challenges in the articles Greene cites is not a distraction; it is central to figuring out how to safely and prudently conduct research into SRM technologies. No such acute research governance challenges exist for most CO$_2$ removal techniques.

JASON J. BLACKSTOCK* AND JANE C. S. LONG
1International Institute for Applied Systems Analysis, Laxenburg A2361, Austria. 2Centre for International Governance Innovation, Waterloo, ON N2L 6C2, Canada. 3Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
*To whom correspondence should be addressed. E-mail: jjb@iiasa.ac.at

References
ERRATUM

Letters: “Climate change and the integrity of science” by P. H. Gleick et al. (7 May, p. 689).
Due to an editorial error, the original image was not a photograph but a collage. It was a mistake to have used it. The image (link available at www.sciencemag.org/cgi/content/full/328/5979/689/DC2) has been replaced in the HTML version and in the online PDF by an unaltered photograph from National Geographic (CREDIT: Paul Nicklen/National Geographic/Getty Images) of two polar bears on an ice floe.