Space Centrifuge Habitat Design

Space Payload Design
ASEN 5519
Final Presentation

Matthew Vellone

Thursday, 11 Dec 2003
Centrifuge Applications and Artificial Gravity Generation

- Idea heritage of artificial gravity:
 - Von Braun and Arthur C. Clarke rotating space station concepts
 - Russian Cosmos missions, 1975-'92
 - Small centrifuge on Mir
 - ISS centrifuge (~2008 ?)
 - Mars Society—application to trip to Mars and long term stay

- Ground applications:
 - NASA Ames
 - Astronaut training
 - Other applications—CU Civil Engineering, bio & chem applications, auto industry
A Centrifugal Habitat On Orbit

...Many Experimental Gains

• General goal of centrifuge:
 • To answer “the fundamental question of what role(s) gravity has in the development of organisms from the cellular level up to that of an entire individual organism.” -www.spaceref.com/iss/elements/cam.html
 • “...study the effects of prolonged exposure to Martian gravity on mammals, a vital step on the road to human exploration of Mars.” -Mars Society Translife Website (http://www.marsociety.org/translife/)

• Isolation of gravity level as experimental variable.
• Experimentation at wide range of gravity levels -> test for many scenarios.
...And Many Engineering Challenges

• Angular momentum effects on s/c.
• Safety issues of massive spinning machinery.
• Lifetime issues with spin (e.g. bearing wear, motor life).
• How to get recourses & power to, and waste & data from a spinning test configuration.
• Gravity gradient issues.
• Maintenance of spin rate for consistent “gravity” value.
• Vibration isolation/mitigation onboard s/c; e.g. not to disturb artificial gravity environment or μg environment aboard ISS → Mass Balance Control.
STAGE-1: Student Artificial Gravity Experiment

• An artificial gravity proof of concept and ground control.
• Goal: address key issues in ground prototype -> “Work out the initial bugs.”
 • Smaller scale, smaller budget, quicker timeline.
• Three key issues:
 1. Mass balance and control (MBC) to mitigate vibration transmission.
 2. Spin control/rotating interface.
 3. Habitat (airflow, heat and waste removal, odor control, light, follow National Institutes of Health (NIH) guidelines feasibly).
• In addition:
 • Containment, general sizing of hardware, layout, look and feel of concept all nailed down.
 • Obtain initial data from which to design and build STAGE-2.
 • Use as a ground control for actual on-orbit unit.
STAGE-1

- Intended to be modular with subsystems designed and built in parallel.
Mass Balance Control & Spin Rate Control

Passive MBC: Bi-directional pivot, aligns hab with net force vector.

Active MBC: H_2O pumped back and forth based on load cell inputs.

Spin rate: Monitored with optical encoder.

Spin: Provided with DC motor and adjustable belt.
Habitat “Self-Standing”

- But requires external power, water and air; plug-in concept.
Final Assembly and Operational Unit

- Together show cohesiveness of design process & satisfy key goals.

Full Assembly

First Spin
STAGE-1: Successful First Generation Hardware

- Needs improvements in second generation.
- What worked: Key centrifuge issues addressed successfully
 - Spinning interface.
 - Habitat: airflow, heat removal, food & water availability, waste and odor removal, general viability of a habitat for mice meeting NIH standards.
- What needs improvement:
 - Power system and instrumentation: improve overall system and make a greater part of integrated design from beginning.
 - MBC: concept good, needs refinement, reduce overshoot in feedback.
 - Habitat: improve and automate waste roller, improve change-out access for odor removal.
 - In general: refine systems, instrument well, improve power and data acquisition system (DAQ), take lots of data.
Take Home Lessons Learned From STAGE-1

- Successful proof of concept/hardware demonstration and ground control unit are big steps for the first generation.

- But, refinement to STAGE-2 and going from “flight qualifiable” to “space rated” is a time consuming, detailed process, especially for a manned s/c. (one of reasons for doing ground prototype first).

- Carry parallel design philosophy through to end:
 - Power/DAQ/software lagged behind hardware. Try to keep comparable, integrated pace with one another.
References

- www.spaceref.com/iss/elements/cam.html
- http://www.marsociety.org/translife/
- http://www.palantir.net/2001/
- http://liftoff.msfc.nasa.gov/academy/history/VonBraun/spaceage.html
- http://www.nih.gov/
- Mars Society Translife Science Definition Document, Dr. Chris McKay, Editor, 11/25/01
- http://lifesci.arc.nasa.gov/LIS/Programs/Cosmos/overview/Cosmos_Biosat.html
- STAGE-1 CDR Presentation, CDR.ppt, 18 December 2001
- STAGE-1 NASA Ames Presentation, Ames.ppt, 28 February 2002
- STAGE-1 Final Briefing, finalbriefing.ppt, 09 May 2002
- STAGE-1 Mars Society Conference, Mscon.ppt, 08 August 2002